

EN

PHYSICIAN'S GUIDE

Glasgow 12-lead ECG Analysis Program

P/N 04145.02 Version 1.0

GS Elektromedizinische Geräte G. Stemple GmbH Hauswiesenstraße 26 86916 Kaufering Germany

CE₀₁₂₃

For a patient/user/third party in the European Union and in countries with identical regulatory regime (Regulation 2017/745/EU on Medical Devices); if, during the use of this device or as a result of its use, a serious incident has occurred, please report it to the manufacturer and/or its authorised representative and to your national authority.

The right to copy, distribute and translate this User Manual is reserved.

Subject to technical modifications, mistakes and printing errors.

The rights to the trademarks and registered trademarks named remain with the originators and the holders of the respective trademark rights. The use of this User Manual for the following purposes is not permitted without the written consent of GS Elektromedizinische Geräte G. Stemple GmbH: Reproduction, storage, processing, duplication, translation and distribution.

Service Address

For questions, please contact authorised sales and service partners:

Information on authorised sales and service partners can be found at: <u>www.corpuls.world</u>

Table of Contents

1	Intended Us	e5
	1.1 Dia	gnostic Application
	1.2 Int	ended Population
		ended Location
	1.4 Dia	gnostic Accuracy
2	Directions f	or Users
	2.1 Dej	siction of Warnings
		niction of Notes.
3	Intorprotati	on criteria
J	•	asurement reference
		nd T wave morphologies
4		comments
		d related
		rthm related
		nographic related
5		
		hycardia
		dycardia
	5.3 Ma	rked sinus bradycardia
6	Intervals .	
	6.1 PR	interval
	6.2 QT	interval
7	Atrial abnor	malities
8	NPS avia da	viation
U		
9	Conduction	defects
10	Wolff-Parki	nson-White pattern
11	Brunada na	ttern
	•	
12		
		t ventricular hypertrophy
	•	ht ventricular hypertrophy
13	,	infarction
		MI criteria
	•	arbossa's criteria
		<i>r</i> ave criteria
	13.	
	13.	
	13.4 Pos	terior myocardial infarction

	13.5Anterolateral myocardial infarction
14	ST abnormalities
15	ST-T abnormalities (ischaemia etc.)
16	Miscellaneous .65 16.1 Low QRS voltages .65 16.2 Tall T waves .65 16.3 Critical values .66
17	Rhythm statements
18	Summary codes
19	Measurement matrix
20	List of statements

1 Intended Use

(IEC 60601-2-51 SECTION 50)

1.1 Diagnostic Application

The Glasgow Program is intended to provide an interpretation of the resting 12 lead ECG in all situations, whether this be in a hospital or primary care setting. It is capable of diagnosing all commonly recognized ECG abnormalities such as myocardial infarction (MI), including acute MI, ventricular hypertrophy, abnormal ST-T changes and common abnormalities of rhythm. Conduction defects and other abnormalities such as prolonged QT interval are also reported. The software is not designed for interpretation of exercise electrocardiograms. The software has been widely used in clinical trials, e.g. the West of Scotland Coronary Prevention Study¹ and hence has had wide exposure to recording of electrocardiograms in all commonly required situations.

1.2 Intended Population

The Glasgow Program is intended for use in adults and children of any age from birth upwards. The Program makes significant use of the patient's age and gender and indeed operates at the level of days in the case of neonates^{2,3}. It is believed to be the only program that is based on normal limits derived using the algorithm itself with this applying to criteria for subjects of all ages, including neonates. Indeed, it is known that other developers utilize the Glasgow normal limits.

1.3 Intended Location

The Glasgow Program is intended to be used in hospital or in a general physicians office, or in out of hospital locations such as an ambulance. It is able to accept details of the patient's name, age, sex and race, and automatically invokes the appropriate criteria and routines such as special logic for acute myocardial ischaemia where necessary. There cannot be any difference in ECG appearances of acute myocardial infarction depending on the location of ECG recording – it is only the prevalence of the abnormality that will vary.

1.4 Diagnostic Accuracy

The program is designed to be as accurate as possible with the emphasis being, if anything, towards a high specificity given that the criteria are based on the normal limits already described. Nonetheless, the program has high sensitivity for detecting all cardiac abnormalities as is evidenced by the results presented in the following section. In short, the program aims for the highest sensitivity at a high specificity although there is always a trade off between one and the other.

¹ Shepherd J, Cobbe SM, Ford I et al including Macfarlane PW.Prevention of coronary heart disease with Pravastatin in men with hypercholesterolemia.New Engl J Med 1995; 333: 1301-7

² Macfarlane PW, Coleman EN, Pomphrey EO, McLaughlin S, Houston A, Aitchison TC.Normal limits of the high-fidelity pediatric ECG. Preliminary observations.J Electrocardiol 1989; 22(suppl): 162-8.

³ Macfarlane PW, Budgett S, Devine B, Aitchison TC.Paediatric ECG Analysis – The Glasgow ApproachIn: Electrocardiology 96 (ed) J. Liebman. 1997:451-460.

2 Directions for Users

2.1 Depiction of Warnings

DANGER!

A hazard with a high degree of risk which, if not avoided, will result in death or serious injury.

WARNING!

Computer assisted interpretation is a valuable tool when used properly. No automated analysis system is completely reliable, however, and interpretations should be reviewed by a qualified physician before treatment, or non-treatment, of any patient.

CAUTION!

A hazard with a low degree of risk which, if not avoided, may result in minor or moderate injury.

NOTICE!

i

Denotes a hazard with a low degree of risk which, if not avoided, may result in minor or moderate damage to property or the environment.

2.2 Depiction of Notes

Notes point out important information which the user must heed when carrying out an instruction. Notes provide the user with additional information on a particular issue.

3 Interpretation criteria

This section describes the criteria for interpretive statements. It is intended for expert users.

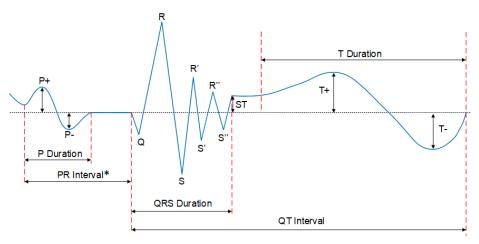
WARNING!

i

Computer assisted interpretation is a valuable tool when used properly. No automated analysis system is completely reliable, however, and interpretations should be reviewed by a qualified physician before treatment, or non-treatment, of any patient.

This guide sets out, in broad terms, the diagnostic criteria used by the University of Glasgow automated ECG analysis program. It is not possible to provide exact details of every criterion because various equations and procedures are involved which do not lend themselves to simple reproduction in this guide.

3.1 Measurement reference


Overall P onset, P offset, QRS onset, QRS offset and T termination are determined from all 12 leads. Individual lead wave amplitudes are then obtained.

P+, P-, Q, R, S, R', S', R'', S'', ST, T+ and T- amplitudes are measured with respect to a horizontal line through the lead QRS onset.

Durations are measured between relevant points.

Areas are measured in units of millivolts x milliseconds but are scaled for storage and printout as μ V.msecs/20. Units of measure are not specified when an area measurement appears in the criteria. For example, a printed value of 3259 in the measurement matrix corresponds to an actual area of 65180 μ V.msecs.

Isoelectric components between the overall QRS onset and an individual lead onset are not included in a ${\tt Q}$ or ${\tt R}$ duration.

*PR Interval is identical to PQ

3.2 P and T wave morphologies

Throughout the handbook, the criteria may make reference to P or T wave morphologies where the morphology may be described as a number between -2 and +2. These morphologies refer to the wave shapes as follows:-

Morphology = +1 Morphology = -1 Morphology = +2 Morphology = -2

4 Preliminary comments

Advisory statements are included in the diagnostic output. The purpose of these statements is to supply information or give a warning about possible problems with the validity of the data. There are 4 main categories of preliminary comments: lead related (subdivided into two groups – lead validity and lead reversal/dextrocardia), rhythm related, demographic related and restricted analysis.

4.1 Lead related

a) Validity

This introductory section of the diagnostic software checks the validity of the leads. The criteria apply to ECGs recorded from patients of all ages.

Criteria

Α.		I.	the QRS area in Vn is negative,
			and the QRS area in the leads on either side is positive
	or	II.	the QRS area in Vn $< 25\%$ of the area for Vn-1 and Vn+ 1,
			and all areas have the same sign
B.			QRS area > 500 in Vn-1, Vn, and Vn + 1
C.		I.	R amp in V2 + 0.025 < R amp in V1
	and	II.	T+ amp in V1 > T+ amp in V2 + 0.025
	and	III.	T+ amp in V3 > T+ amp in V2 + 0.025
	and	IV.	T+ amp in V2 > 0
D.		I.	R amp in V1 - R amp in V2 > 0.2 mV
	and	II.	R amp in V3 - R amp in V2 > 0.2 mV
	and	III.	T-amp in V2 > T+amp in V2
E.		I.	T+ amp in V1 > T- amp in V1 + 0.025
	and	II.	T-amp in V2 > T+amp in V2 + 0.025
	and	III.	T+ amp in V3 > T- amp in V3 + 0.025
F.		I.	R amp in V1 $>$ R amp in V2 + 0.4mV and R' amp in V2 = 0
	and	II.	R amp in V3 $>$ R amp in V2 + 0.4mV and R' amp in V2 = 0
G.			QRS area in V1 $<$ 0 and QRS area in V2 $>$ 0
			and QRS area in V3 $<$ 0 and QRS area in V4 $>$ 0
Н.		I.	R amp in V2 $>$ R amp in V3 + 200
	or	II.	S amp in V1 > S amp in V2 * 3
			and S amp in V3 > S amp in V2 * 3
I.		I.	max (R,R') amp in V2 $> 2.5^{\ast}$ max (R,R') amp in V1
			and max (R,R') amp in V4 $> 2.5^{\ast}$ max (R,R') amp in V3
	and	II.	max (R,R') amp V2 > max (R,R') amp V3 + 300
J.		I.	There is no Q in V2
	and	II.	There is not (R' in V1 and V2 but not in V3)
К.			There is not a Q in V1 where $ Q > 0.075 mV$

Statements					
1. Possible faulty Vn – omitted from analysis					
For	For leads V2-V5:				
	(a)		I.	peak-peak QRS in any one of V2 to V5 < 0.35mV	
				and $< 1/3$ peak-peak QRS of the leads on either side	
		or	II.	if the peak to peak QRS in any one of V2 to V5 < 0.5 mV	
				and $< 1/5$ peak-peak QRS of the leads on either side	
and	l (b)			T+ $<$ 0.10 mV with T- $>$ -0.10 mV in that lead	
2. Possible fau	ty V6	- omit	ted fro	om analysis	
	(a)			peak-peak QRS in V6 < 0.3 mV,	
				and < 1/3 peak-peak QRS in V5	
or	(b)			peak-peak QRS in V6 < 0.5 mV,	
				and < 1/6 peak-peak QRS in V5	
or	(c)			if P+ = 0 in V6 with QRS area in V6 < -200	
				and QRS area in V5 $>$ 200	
3. Possible seq	uence	error:	V1, V2	2 omitted	
	(a)			C or D or E or F is true	
and	l (b)			K is true	
4. Possible seq	uence	error:	V2, V3	3 omitted	
	(a)		I.	G and H are true	
		or	II.	l is true	
and	l (b)			J is true	
5. Possible seq	uence	error:	Vn, Vr	n+1 omitted	
For	leads	V3-V5			
	(a)			A and B are true	
6. V1/V2 are at	least	one in	terspa	ce too high and have been omitted from the analysis	
	(a)			P- > 0.05mV in leads V1 and V2	
and	l (b)			0.5mV > R' > R > 0.045mV in lead V2	
and	l (c)		I.	0.5mV > R' > R > 0.045mV in lead V1	
		or	II.	R' = 0mV in lead V1	
and	l (d)			T- > 0.05mV in leads V1 and V2	
7	a	6	due!:		
. ,	7. Lead(s) unsuitable for analysis				
it any of the lea	ds is r	iot pre	esent,	the above statement is printed with the appropriate lead identified.	

8. --- Possible measurement error ---

The maximum absolute value of the P+ or P- wave in any lead exceeds 1.0mV.

b) Lead reversal/dextrocardia

This section of the program aims to detect faulty application of the limb leads and to differentiate this from dextrocardia. The criteria are age dependent and allowance has to be made for the fact that Lead V3 may not be available in children.

Criteria

A.			the P wave flag is set
B.			$85^{\circ} < P$ axis $\le 180^{\circ}$ or $-180^{\circ} \le P$ axis $< -85^{\circ}$
C.			85° < QRS axis \leqslant 180°, or -180° \leqslant QRS axis < -85°
			and (the QRS area in Lead I is negative
			or [R duration >= 40ms and Q duration >= 40ms])
D.			in V6, the peak to peak QRS $>$ 0.5 mV, with the QRS area $>$ 0 and P+ $>$ P- and (R amp in lead I $<$ 0.2mV or there is a Q wave in lead I)
E.		I.	$0 \leqslant R(n\!+\!1) \leqslant R(n)$ for n = V3, V4, V5
			or R \leq 0.1 mV for all of V3, V4, V5, V6
	and	II.	$100>QRS$ area (n+1) $>$ QRS area(n) for n = V3, V4, V5, and in V6, peak to peak QRS $<$ 0.8 mV, with R $<$ 0.1 mV, and QRS axis $>60^\circ$
F.		I.	in I, $ Q > R \ge R'$, or ($ S > R'$, with Q = O and $ S > R+100$
	and	II.	in V6, S > 0.25 mV or $ R/S \ge 2$
	and	III.	ST polarities are opposite in I and V6 as are T wave amplitudes
G.			R and R' amplitude < 0.135 mV
H.			S and S' amplitude < 0.05 mV
J.			Q < 0.06 mV
К.			QRS area in lead I + QRS area in lead III <
			QRS area in lead II + 50
L.			T+ + T- < 0.07 mV
Μ.			QRS area in lead II - QRS area in lead I <
			QRS area in lead III + 50
N.			$90^{\circ} < T$ axis $\le 180^{\circ}$ or $-180^{\circ} \le T$ axis $\le -90^{\circ}$
			and P- amplitude in lead I < -0.1
			and QRS area in lead I < -500
			and T- amplitude in lead I < -0.05 $$
0.			P+ amplitude < 0.075
Р.			QRS area in lead II - QRS area in lead III <
			QRS area in lead + 50
Q.		I.	$-180^{\circ} < P axis \le -90^{\circ}$
	and	II.	$-90^{\circ} \leq \text{QRS axis} < -30^{\circ}$
	and	III.	$-90^\circ = T axis < 0^\circ$
	and	IV.	$\Sigma~$ P- over leads I, II, III > 200
	and	V.	heart rate < 120 bpm

Statements

otatementa	,				
1 Poss	ible aı	rm lea	d reve	ersal –	hence only aVF, V1 – V6 analyzed
		(a)			A and B and C and (D or F or N) true and E false
					and age > 180 days
	or	(b)			C and F true and (not A) and age $>$ 180 days
	or	(c)			A and B and { Σ TI x Σ TV6 < 0 } and age < 180 days
					where \sum TI = TI+ - TI- and T+ is the amplitude of the positive
					component of the T wave and T- is the amplitude of negative
					component of the T wave.
2 Sugg	jests d	lextroc	cardia		
		(a)			1 is not true
	and	(b)		I.	A and B and E are true
			or	II.	(not A) and C and E are true
3 Poss	ible liı	mb lea	id revi	ersal -	- hence only V1-V6 analyzed
		(a)		I.	G, H, J, L and O are true for lead II
	and			II.	K is true
	or	(b)		I.	G, H, J, L and O are true for lead III
			and	II.	M is true
	or	(c)		I.	G, H, J, L and O are true for lead I
			and	II.	P is true
4 Poss	ible ar	rm/leg	lead	interc	hange – hence only V1-V6 analyzed

(a)

Q is true

4.2 Rhythm related

If there is an arrhythmia which results in abnormal ventricular conduction, e.g. VT, the diagnostic report may not be valid. In this case, the following statement will be printed.

1. If rhythm is confirmed, the following report may not be valid.

4.3 Demographic related

The following statements can be printed in the event of faulty input of clinical data or in the event of missing demographic data. Analysis continues with default values chosen. In addition, there is a statement to indicate if pediatric criteria is being used.

1. --- Invalid clinical data entry ---

	(a)	clinical classifications are normal + any other
or	(b)	clinical classifications are unknown + any other

2. --- Invalid medication entry ---

(a)

drugs are unknown + any other

corpuls3 does not support drugs as an input.

i

- 3. --- Interpretation made without knowing patient's gender ---
- 4. --- Interpretation made without knowing patient's age ---
- 5. -- Interpretation made without knowing patient's gender/age --
- 6. --- Interpretation based on pediatric criteria ---
 - (a) the patient is under 18 years of age

4.4 Restricted analysis

If it is not meaningful to interpret the QRS-T morphology for whatever reason, one of the following statements will be printed.

- 1. Pacemaker rhythm no further analysis
- 2. --- No further analysis due to lack of dominant QRS ---
- 3. --- Similar QRS in V leads ---
- 4. --- Technically unsatisfactory tracing ---

5 Heart rate

The limits for tachycardia and bradycardia are clearly age related in the neonatal and paediatric age range. In the program, a continuous limit of normality is used for certain age ranges such as from birth to 28 days (see example below). These data were obtained from a study of over 1,750 healthy neonates, infants and children.

5.1 Tachycardia

Age range *	Rate in beats / min
Birth - 28 days	163 → 180
29 days - 180 days	180
181 days - 17 years	180 → 100
≥ 18 years	100

* corpuls3 does not support age entry in days.

5.2 Bradycardia

Age range *	Rate in beats / min
Birth - 28 days	$88 \ \rightarrow \ 105$
29 days - 365 days	105
1 year (366 days)	$105 \rightarrow 60$
– 6 years (2191 days)	
6 years (2192 days)	$60 \rightarrow 50$
– 12.5 years (4600 days)	
> 12.5 years (4600 days)	50

N.B. The final limits of 100 and 50 are user programmable.

Example: For a neonate of 14 days of age,

the tachycardia limit is 172/min and the bradycardia limit is 96/min.

 \mathbf{i}

 * corpuls3 does not support age entry in days.

5.3 Marked sinus bradycardia

If the heart rate is less than 40bpm, then marked sinus bradycardia is reported.

6 Intervals

The normal limit of PR interval is age dependent and the appropriate continuous equation is utilised in the software. To control specificity, it was decided to maintain the upper limit of normal for adolescents and adults at 200ms although there is evidence that it may be slightly less than this value particularly in the younger of these age groups.

Since QT interval is essentially heart rate related, an age dependent equation has not been utilised. However, if the heart rate exceeds 125 per minute, no statement on corrected QT interval is printed. This approach also applies if the QRS duration is in excess of 120ms.

6.1 PR interval

Omit this section if:

	(a)	the P wave flag (from rhythm analysis) is not set,
or	(b)	the rhythm is not Sinus rhythm,
or	(c)	WPW pattern is present

Statements

1. Short PR Interval

(a)

the PR interval is less than the lower limit for age as specified in the table

Age	Limit in ms
0-15 years	75 + 0.006 * Age (days)
16+ years	110

2. with 1st degree A-V block

(a)

The PR interval \geq the age dependent limit as specified in the table.

Age	Limit in ms
≤ 18 years	163 + 0.0087 * Age (days)
> 18 years	220

3. with borderline 1st degree A-V block

	(a)	
and	(b)	

2(a) is not true.

The PR interval \geq the age dependent limit as specified in the table.

Age	Limit in ms
≤ 18 years	143 + 0.0087 * Age (days)
> 18 years	200

i

The statements 2 and 3 are determined by the rhythm analysis.

6.2 QT interval

If the QRS duration \ge 120ms, or if the heart rate exceeds 125/minute, omit this section. The criteria in this section use the corrected QT interval denoted QTc. The particular formula for computing QTc is user selectable and can be one of the following:-

Hodges¹ $QTc = QT+1.75 \times (HeartRate-60)$

Bazett²

$$QTc = QT \times \left(\frac{HeartRate}{60}\right)^{\frac{1}{2}}$$

Fridericia³

$$QTc = QT \times \left(\frac{HeartRate}{60}\right)^{\frac{1}{3}}$$

Framingham⁴
$$QTc = QT + |154 \times \left(1 - \frac{60}{HeartRate}\right)$$

If there is no facility for the user to select which QTc formula is to be used, the Hodges QTc formula will be used by default.⁵

Statements

1. Borderline prolonged QT interval

	(a)			infant < 6 months and 500ms \leq QTc < 520ms
or	(b)			male and age > 6 months and 460ms \leq QTc $<$ 480ms
or	(c)			female and
			I.	age \geq 50 years and 470ms \leq QTc $<$ 490ms
		or	II.	6 months < age < 50 years and 460ms \leq QTc < 480ms

2. Prolonged QT - consider ischemia, electrolyte imbalance, drug effects

	(a)			infant < 6 months and QTc \geq 520ms
or	(b)			male and age $>$ 6 months and QTc \geq 480ms
or	(c)			female and
			I.	age \ge 50 years and QTc \ge 490ms
		or	II.	6 months < age < 50 years and QTc \geq 480ms

- ¹ Hodges M, Salerno D, Erlien D. Bazett's QT correction reviewed. Evidence that alinear QT correction for heart rate is better. J Am Coll Cardiol 1983;1:694.
- ² Bazett HC. An Analysis of the time relations of electrocardiograms. Heart 1920; 7:353-370.
- ³ Fridericia LS. Die Systolendauer im Elektrokardiogramm bei normalen Menschen und bei Herzkranken. Acta Med Scan 1920;53:469-486.
- ⁴ Sagie A, Larson MG, Goldberg RJ, et al. An improved method for adjusting the QT interval for heart rate (the Framingham Heart Study). Am J Cardiol 1992;70:797-801.
- ⁵ Luo S, Michler K, Johnston P, Macfarlane PW. A comparison of commonly used QT correction formulae: the effect of heart rate on the QTc of normal ECGs. J Electrocardiol 2004;37(suppl):81-90.

i	copruls3 does not support	uls3 does not support drugs as an input.			
	3. Short QT interval				
	(a)	QTc < 350ms			

7 Atrial abnormalities

If the P wave flag is not set, or rhythm is not sinus, omit this section.

Criteria

	A.				P duration \ge 150ms
	B.				P+ amplitude > 0.3 mV in any one of II, III, aVF.
	C.			I.	P- amplitude in V1 ≤ -0.15mV
			and	II.	P terminal duration in V1 \ge 40ms
	D.	(a)		I.	age > 30 days
			and	II.	P+ in V1 > 0.20mV
			or	III.	P+ in V2 > 0.225mV
	or	(b)		I.	age ≤ 30 days
			and	II.	P+ in V1 > 0.25mV
			or	III.	P+ in V2 > 0.25mV
Statements	6				
1. Possible	right	atrial	abnor	mality	
		(a)			B is true
	or	(b)		I.	D is true
			and	II.	A is false
			and	III.	clinical classification is not respiratory disease
2. Consider	[,] left a	itrial a	bnorn	nality	
		(a)			A is true
	and	(b)			D is false
3. Possible	right	atrial	abnor	mality	consistent with pulmonary disease
		(a)			D is true

and	(b)	A is false
and	(c)	clinical classification is respiratory disease

4. Possible left atrial abnormality

	(a)	C is true
and	(b)	D is not true

5. Possible biatrial enlargement

	(a)	D is true
and	(b)	A or C is true

8 QRS axis deviation

Statements

The section on frontal plane abnormalities is omitted if one of Leads I, II, III is not available or if WPW is present. The following age dependent equation is used to calculate the upper limit of normal QRS axis for patients with an age ≤ 6 months.

LIM = [230 -	(0.66*age	(days)].
--------------	-----------	----------

The maximum value of LIM is set at 110° for all patients over the age of 6 months.

1. Indetern	ninate	axis			
		(a)			The (algebraic) sum of the amplitudes of Q, R and S < 0.15mV in Leads I, II and III.
					If the above statement is true, omit the remainder of this section.
2. Leftward	d axis				
		(a)		I.	age > 30 years
		. ,	and	II.	-30° < overall QRS axis ≤ -20°
	or	(b)		I.	15 ≤ age ≤ 30 years
			and	II.	QRS axis < (15 - age (years)) * 2 + 10
3. Left axis	s devia	ation			
o. Lore une	A.				RBBB WITH LEFT ANTERIOR FASCICULAR BLOCK is NOT present
and		(a)		I.	age > 30 years
		()	and	II.	-45° < overall QRS axis < -30°
			and	III.	QRS area in aVF < 0
	or	(b)		I.	15 ≤ age ≤ 30 years
			and	II.	QRS axis < (15 - age (years)) * 2
4. Marked	left a	xis de	viatior	1	
		(a)			RBBB WITH LEFT ANTERIOR FASCICULAR BLOCK is NOT present
	and			I.	-120° ≤ overall QRS axis ≤ -45°
			and	II.	QRS area in aVF < 0
5. QRS axis	s leftv	vard f	or aqe		
	A.		Ū		RBBB WITH LEFT ANTERIOR FASCICULAR BLOCK is NOT present
and	B.	(a)		I.	age < 7 days
			and	II.	-120° < overall QRS axis < 75°
			and	III.	(QRS axis < 0° and QRS area aVF > 0) is not true
	or	(b)		I.	7 days ≤ age ≤ 182 days
			and	II.	-120° < QRS axis < 78° -(78*Agedys)/182
	or	(c)		I.	183 days ≤ age < 15 years
			and	II.	-120° < QRS axis < 0°
6. Rightwa	rd axi	S			
		(a)		I.	age ≥ 182 days
			and	II.	90° < overall QRS axis < LIM

7. Right axis dev	lation			
	(a)			LIM ≤ overall QRS axis < max (LIM + 10°, 180°)
				(usually 110° \rightarrow 120° for age > 6 months)
8. Marked right a	axis di	eviatio	n	
	(a)			LIM +10 ≤ overall QRS axis < max (LIM + 20°, 180°)
				(usually 120° $ ightarrow$ 180° for age > 6 months)
9. Left anterior f	ascicı	ılar bl	ock	
(If all the followi	ng cri	teria	are m	et, this statement replaces Nos. 2, 3,4 and 5)
	(a)			LBBB or RBBB WITH LEFT ANTERIOR FASCICULAR BLOCK or IVCD are not present
and	(b)			There is no inferior infarct or extensive infarct
and	(c)			R amplitude > 0 in Lead II
and	(d)			The QRS complexes in leads aVR and aVL each end in an R wave
and	(e)			The peak of the terminal R wave in lead aVR
				occurs later than the peak of the terminal R wave in lead aVL $% \mathcal{A}_{\mathrm{r}}$
and	(f)			-120° < QRS axis ≤ -45°
10. Possible left	anter	ior fas	cicul	ar block
	(a)			9(a) to 9(e) are true
and	(b)			$-45^{\circ} < QRS axis < -30^{\circ}$
11. Possible left	poste	rior fa	iscicu	lar block
(If all the followi	ng cri	teria	are m	et, this statement replaces Nos. 6,7 and 8).
	(a)			RVH is not present
and	(b)		I.	90° < QRS axis < 180° and age \geq 30 years
		or	II.	$105^{\circ} <$ QRS axis $<$ 180° and age $<$ 30 years
and	(c)			QRS duration < 120ms
and	(d)			R or R' in lead II > 0.8mV
and	(e)			R or R' in lead III $> 1mV$
and	(f)			$Q\leqslant$ -0.02mV in leads II and III
12. Severe right	axis d	eviati	on	
	(a)			max (LIM + 20°, 180°) < overall QRS axis < 240°
	(a)			111dx (LIM + 20 , 100) < 0verall und axis < 240

9 Conduction defects

The duration criteria for conduction defects are age dependent. As indicated in the Introduction, it is possible to utilise an equation to calculate the upper normal limit of QRS duration from birth to adolescence and a similar concept can be applied to determine the normal limits of the duration of Q, R, S waves individually. In order not to complicate the criteria listing, certain duration values are listed as a constant value plus an age dependent variable denoted by LIM1 or LIM2 or LIM3. The following table lists the values of these three variables at birth and in adolescence. Adult criteria are obtained by using the higher of the values while paediatric criteria are derived from an age dependent value intermediate to the two limits.

	Birth	Adolescence
LIM1	0 ms	32 ms
LIM2	29 ms	35 ms
LIM3	40 ms	45 ms

As an example, Criterion 1a indicates that the R or R' duration in Lead I has to exceed 68ms at birth or 100ms in adulthoood for the criterion to be met, while at age 10, the critical duration would be approximately 85ms.

Although constant values are specified in the criteria, the discrete thresholds between normal and abnormal have been replaced by continuous functions. These functions were introduced to improve the repeatability of the program. Algebraic rules have been used to combine criteria.

Statements

1. Left bundle branch block

A.	(a)			the QRS spatial velocities at any two of 4/8, $5/8$
				and 6/8 < 100 mV/sec
and	(b)		I.	in Lead I, V5 or V6:R $>$ LIM1 + 68ms, with Q $>$ -0.02mV
		or	II.	in Lead I, V5 or V6: $R^\prime > LIM1$ + 68ms, with S $>$ -0.02mV
and	(c)			in V1, either Q or S \geq LIM1 + 58ms with amplitude < -1 mV
and	(d)			(R+R') duration summed over I, V5 and V6 $>$ 3*(LIM1 + 58ms)
and	(e)			R amplitude/R duration < 20 in I and (V5 or V6) with $ \text{R/S} > 4$
and	(f)			QRS duration \ge LIM1 + 88ms in any two leads
and	(g)			in V2, sum of R+R' < 0.3mV

ſ	or	B.				1A and 6A are false and from the following criteria either:
						(a and b and c and d and f)
				or		(b and d and e and f) is true
			(a)			QRS duration $>$ LIM1 + 88ms in any two leads
			(b)		I.	in Lead I, V5 or V6: R $>$ LIM1 + 68ms, with Q $>$ -0.02mV
				or	II.	in Lead I, V5 or V6: R' $>$ LIM1 + 68ms, with S $>$ -0.02mV
			(c)		I.	in Lead I, S \leq LIM2, or S \geq -0.15mV, or $ R/S $ \geq 4
				and	II.	in Lead I, S' \leq LIM2, or S' \geq -0.15mV, or $ R'/S' \geq 4$
			(d)			in V1 or V2, either Q or S $>$ LIM1 + 68ms,
						with corresponding amplitude < -1.0mV
			(e)			the QRS spatial velocity at 4/8 and 5/8 $<$ 100mV/sec
			(f)			(R+R') duration summed over I, V5 and V6 $> 3^{*}(LIM1$ + 58ms)
2. Inco	nmnl	ete I F	RB			
		010 22	(a)		I.	in V5 or V6, R > LIM1 + 38ms, with Q > -0.02mV
			(4)	or	 II.	in V5 or V6, R' > LIM1 + 38ms, with S > -0.02mV
		and	(b)	•	Ι.	in V5 or V6, 100ms < QRS < 130ms
			(-)	and	II.	in V1 or V2, 100ms < QRS < 130ms
		and	(c)			the QRS spatial velocities at $4/8$ and $5/8 < 100$ mV/sec
		and	(d)		I.	' in I, S ≤ LIM2, or S ≥ -0.15mV or R/S > 4
			()	and	II.	in I, S' ≤ LIM2, or S' ≥ -0.15mV or R'/S' > 4
		and	(e)		I.	in V1 and V2, R and R' > LIM3 + 15ms
2 Diak	ht hu	undlo k	ranak	hlaal	,	
3. Rigł		A.			N	QRS duration in V5 or V6 > LIM1 + 68 ms,
		л.	(a)			and QRS duration in V1 or V2 > LIM1 + 68 ms
		and	(h)		ī	in I. V5 or V6. S > LIM2, and S < -0.14 mV, and $ R/S < 4$
		anu	(b)	or	ı. II.	in I, V5 or V6, S' > LIM2, and S' < -0.14 mV, and R'/S' < 4
		and	(c)	UI	11.	in V1 or V2, R or R' > 45 ms
		and	(c) (d)		I.	the QRS spatial velocity at 4/8 or 5/8 < 40 mV/sec
		anu	(u)	or	ı. II.	the QRS spatial velocity at $6/8 < 40$ mV/sec with the QRS spatial velocity at $6/8 < 40$ mV/sec with the QRS spatial ve-
				01		locity at 6/8 less than at 7/8
		and	(e)			in V1, T- < -0.1 mV
		and	(f)			QRS axis is not between -30° and -120° or $R > S $ in II
		and	(g)		I.	QRS axis is not between 100° and 135°
				or	II.	R and R' in Lead II < 0.8 mV
				or	III.	R and R' in Lead III < 1 mV
				or	IV.	RVH is present
		and	(h)			QRS duration > LIM1 + 78 ms in any two leads
		and	(i)			WPW is not present
		and	(j)			Brugada pattern is not present

or	B.			I.	(a and b and c) or (d and e)
			and	II.	(f) is true
			and	III.	Brugada pattern is not present
		(a)		I.	QRS duration $>$ LIM1 + 78 ms in any two leads
			and	II.	QRS duration $>$ LIM1 + 83 ms or RVH is not present
		(b)			in Lead V1 or V2, R $>$ LIM3 with S = 0, or R' $>$ LIM3
		(c)		I.	in Lead I, S, S' and R all have 0 amplitude, and Q is not 0
			or	II.	in Lead I, V5 or V6, S > LIM2, and S < -0.14 mV or $ \text{R/S} < 4$
			or	III.	in Lead I, V5 or V6, S' $>$ LIM2, and S'< -0.14 mV or $ \mbox{R/S'} $ $<$ 4
		(d)			R or R' in Lead V1 $>$ LIM1 $+$ 88 ms
		(e)			delta confidence value in Lead V1 is O
		(f)			QRS axis is not between -30° and -120° or R $>$ S in II
		(g)		I.	QRS axis is not between 100° and 135°
			or	II.	R and R' in Lead II < 0.8 mV
			or	III.	R and R' in Lead III < 1 mV $$
			or	IV.	RVH is present
3BB w	ith lef	t ante	rior fa	scicul	ar block

4. RBBB with left anterior fascicular block

			Test (a) below replaces tests (f), (h) in RBBB part A
	or		Test (a) below replaces tests (f) in RBBB part B
(a)		I.	-120° < overall QRS axis < -30° and R \leq S in II
	and	II.	Inferior myocardial infarction is not present

5. RBBB with RAD - possible left posterior fascicular block

				Test (a) below replaces (g), (h) in RBBB part A
		or		Test (a) below replaces (g) in RBBB part B
(a	I)		I.	$100^\circ \leqslant$ overall QRS axis \leqslant 135° and age $>$ 6 months
		and	II.	R or R' in Lead II \ge 0.8 mV
		and	III.	R or R' in Lead III $\ge 1 \text{ mV}$
		and	IV.	RVH is not present

6. IV conduction defect

Eithe	r A or B is true	
A.	(a)	in Lead I, R or R' > LIM1 + 68 ms
and	(b)	in Lead I, T+ < 0.1 mV and T- < -0.1 mV
and	(c)	in V1, R or R' > LIM3
and	(d)	the QRS spatial velocity at 4/8 or 5/8 < 40 mV/sec
and	(e)	in V1, both Q and S have duration \leq LIM1 + 68 ms
		or amplitude ≥ -1 mV
and	(f)	Brugada pattern is not present

7.

В.				Statement 1 to 5 are false, Brugada pattern is not present and from the following criteria either:
				(a) is true
		or		(b and c) is true.
	(a)			QRS duration \ge LIM1 + 88 ms in any two leads
	(b)			in V1 or V2, Q or S > LIM1 + 68 ms
	(c)		I.	in lead I or V5, R $>$ LIM1 + 68 ms, and Q $>$ -0.02 mV
		or	II.	in lead I or V5, R^\prime $>$ LIM1 + 68 ms, and S $>$ -0.02 mV
. Incomplete RE	BBB			
	(a)		I.	in V1 or V2, R' \geq 0.2 mV and, in the same lead,
				R^\prime -ST amplitude $> 0.05mV$ and $S^\prime > 0.2~mV,$ and $R^\prime > R$
		and	II.	LIM1 + 68 ms < QRS duration < LIM1 + 88 ms.
and	(b)		I.	there is no atrial fibrillation or flutter
		or	II.	there is atrial fibrillation
				or flutterand R' amplitude > 3*max (P+, P-)
and	(c)			Brugada pattern is not present

8. rSr'(V1) - probable normal variant

Of the following criteria, either (a) or (b) is true and (c) and (d) are true

	(a)		I.	7(a)(i) is true.
		and	II.	QRS duration $<$ LIM1 + 68 ms.
or	(b)		I.	In V1 or V2, 0.15mV < R^{\prime} < 0.2mV and, in the same lead,
				<code>R'-ST</code> amplitude > 0.05 mV and <code>S'</code> > 0.2 mV and <code>R'</code> $>$ <code>R</code>
		and	II.	QRS duration < LIM1 + 88 ms.
and	(c)		I.	there is no atrial fibrillation or flutter
		and	II.	there is atrial fibrillation
				or flutterand R' amplitude > 3^* max (P+ , P-)
and	(d)			Brugada pattern is not present

10 Wolff-Parkinson-White pattern

The diagnosis of WPW pattern is based on an algorithm developed by Fitzpatrick et al¹.

Criteria

A.				QRS duration > 103 ms
B.				PR interval < 185ms
C.				The P axis value lies between -1° and 90° inclusive.
D.				Sum of delta wave confidences over all leads >= 100\% $$
E.	1.	(a)		There is a 65% confidence of a delta wave
				in any 2 of leads I, II, III, aVL, aVF, V1, V2, V3. V4, V5, V6.
	and	(b)	I.	Sum of delta wave confidences over all leads >= 200\% $$
		or	II.	PR interval < 160ms
or	2.	(a)		PR interval < 115ms
	and	(b)	I.	There is a 60% confidence of a delta wave
				in any 2 of leads I, II, III, aVL, aVF, V1, V2, V3. V4, V5, V6.
		or	II.	There is a 40% confidence of a delta wave
				in any 3 of leads I, II, III, aVL, aVF, V1, V2, V3. V4, V5, V6.

WPW pattern is present if all criteria A,B,C,D,E are met.

The statements are of the form:

WPW pattern - probable * accessory pathway

where * is the location and can be one of the following

- right posteroseptal
- midseptal
- anteroseptal
- right anterolateral
- right posterolateral
- left anterolateral
- left posteroseptal
- left posterolateral

Statements

1. WPW pattern - probable right posteroseptal accessory pathway

	(a)		I.	QRS transition between leads V1 and V2,
				or at V2and Ramp > (S amp + 1.0mV) in lead I
		or	II.	QRS transition between lead V2 and V3, or at V3 $$
		or	III.	QRS transition between leads V3 and V4
				and delta wave II \geq 1.0 mV
and	(b)			Sum of delta wave polarities (II, III, aVF) \leqslant -2

Fitzpatrick AP, Gonzales RP, Lesh MD, et al. New algorithm for the localization of accessory atrioventricular connections using a baseline electrocardiogram. J Am Coll Cardiol 1994;23:107-116.

2. WPW pattern	2. WPW pattern – probable midseptal accessory pathway					
	(a)			1(a) is true		
and	(b)			-2 < Sum of delta wave polarities (II, III, aVF) < 2 $$		
3. WPW pattern	- prot	oable a	ntero	septal accessory pathway		
	(a)			1(a) is true		
and	(b)			Sum of delta wave polarities (II, III, aVF) ≥ 2		
/ WPW nattorn .	- nroł	nahlo r	inht a	interolateral accessory pathway		
	(a)		l.	QRS transition between leads V3 and V4		
	(a)		1.	and delta wave in lead II < 1.0 mV		
		or	١١.	QRS transition at or after lead V4		
and	(b)	01	н. І.	If delta wave frontal axis $\geq 1^{\circ}$		
anu	(u)	or	ı. II.	R amp in lead III ≥ 0		
		UI		n anµ m teau m ≥ 0		
5 WDW nattorn	_ nroł	ablo r	iaht r	posterolateral accessory pathway		
J. Wr W pattern	- proc (a)	Janre I	ւցու բ	4(a) is true		
and	(a) (b)			4(b) is false		
anu	(u)			4(0) 15 10(50		
(WDW pottorp	nrok	abla I	oft or	stavalataval accessory nathway		
o. WPW pattern ·		Janre i	l.	Iterolateral accessory pathway		
	(a)	•		QRS transition before or at lead V1		
		or	II.	QRS transition between leads V1 and V2,		
امین	(L)			or at V2and R amp \leq (S amp + 1.0mV) in lead I		
and	(b)		I. 	Sum of delta wave polarities in (II, III, aVF) ≥ 2		
		or	II.	R amp > S amp in aVL		
			<i>c</i> .			
7. WPW pattern	•	oable l	ett po	osteroseptal accessory pathway		
	(a)			6(a) is true		
and	(b)			6(b) is false		
and	(b)		l. 	Sum of delta wave polarities in (II, III, aVF) < 0		
		and	II.	R amp > (S amp + 0.8mV) in I		
8 WPW nattorn	- nroł	12hlo I	oft no	osterolateral accessory pathway		
	- µгос (a)	ימטופ ו	orcho	6(a) is true		
and						
and	(b) (c)			6(b) is false 7(c) is false		
and	(c)			7(c) is false		

11 Brugada pattern

The Brugada pattern statement is implemented according to the criteria published in the Second Consensus Conference on the Brugada Syndrome¹.

Criteria

Α.	STj > 0.2mV
В.	R' amplitude > 0.2mV
C.	ST slope < -15°
D.	T- amplitude < -0.05mV
Ε.	T morphology is +2

Statements

1. Marked ST elevation - consider Brugada pattern

	(a)	Atrial Flutter is not present
and	(b)	A and B and C and D and E are true in V1, V2 or V3 $$

¹ Antzelevitch C, Brugada P, Borggrefe M, et al. Brugada Syndrome. Report of the Second Consensus Conference. Endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation 2005;111:659-670.

12 Hypertrophy

12.1 Left ventricular hypertrophy

If WPW or LBBB has been detected, this section is omitted.

The criteria for LVH are in the form of points awarded for each test. The points are to talled to give a final score.

In a fashion similar to the use of a continuous equation for a normal limit of duration, it is feasible to use such an equation for upper limits of normal voltage of Q, R and S amplitudes. Such equations can be used for adults and children. An example is given for the upper limit of normal R wave amplitude in V5 for boys aged 11 to 18 years:

$RV5 = [93.4 - 0.166 \text{ age (months)}]^2$

A complete set of equations is too detailed to print. For adults, there are separate equations for males and females while for children the continuous equations are also at times sex dependent and, on occasions, are split into two with one equation being from birth to one month of age and the other being from one month until adolescence.

It is also worth noting that equations are dependent on race and at the present time, separate equations are available for Caucasian and Oriental adults.

corpuls3 does not support race as an input.

For clarity, the criteria describe discrete thresholds and integer scores. However, as in other parts of the program, the discrete thresholds have been replaced by smooth continuous functions which return continuous scores. These are combined, where required, with other criteria using algebraic rules and the resulting overall score is used to determine the diagnostic statement that is output.

Criteria

A.

Amplitude (use only the maximum score from criteria I-V). Each part scores 2 points. In addition, Part I, scores 1 extra point for each 0.3mV over the limit. Parts II, III and V score 1 extra point for every 0.5mV over the limit for patients aged 17 and over. Also, 1 point is deducted from I-V if there are Q waves or low R waves in the anterior leads.

- I. the largest R in I or aVL \geq an age and sex dependent limit
- II. |S| in V1 or V2 \geq an age and sex dependent limit
- III. R in V5 or V6 \geq an age and sex dependent limit
- IV. the Lewis Index (RI + |S|III) (RIII+ |S|I) > an age and sex dependent limit (for age 17 and over only)
- V. the Sokolow Lyon Index |SV1| + RV5/V6 > an age and sex dependent limit (for age 17 years and over only)

	Birth	17 years		50 years	50 years	
		Male	Female	Male	Female	
R in I	1.3	1.5	1.5	1.6	1.4	
R in aVL	0.9	1.1	0.9	1.3	1.2	
S in V1,V2	3.0	4.0	3.5	2.5	2.0	
R in V5, V6	3.25	4.0	2.5	2.5	2.2	
Lewis Index	-	2.5	2.0	2.0	1.8	
Sokolow Lyon Index	-	5.0	4.25	4.5	3.75	

Table of sex and age dependent limits for criterion A. All figures are in millivolts.

B. (1-4 points) (a)

In any of I, aVL, V5 or V6

 $ST \le -0.02 mV$ and ST slope is downward sloping Ι. $ST \leq -0.05 mV$ and ST slope is flat or downward sloping II. ST - T - > 0.1mV III. $T - \langle -0.2mV \text{ with } T + \langle 0.15mV \rangle$ R or R' > 1.0mV IV. V. There are no pathological Q waves in the lateral leads VI. QRS < 120ms. Score 4 points if I-VI are true Score 2 points if I,II, III, V, VI are true (b) If (a) is not true then consider: Ι. ST or T changes in the lateral leads II. A (I or IV is true) III. A (II, III or V) is true and not anterior infarction

- IV. A (II, III or V) is true and anterior infarction
- V. QRS < 120ms.
- Score 2 points if I, V and (II or III)

Score 1 point if I, IV and V.

N.B. If B(a) or B(b) is true, deduct 2 points if there is inferior infarction with T- aVF < -0.05mV.

C. (2 points)		I.	In any of I, aVL, V5 or V6
	and	II.	the terminal amplitude of P in V1 $<$ -0.11mV
	and	III.	the terminal duration of P in V1 \ge 40ms

If C is not true, score 1 if atrial fibrillation or atrial flutter is present.

 D. (2 points)
 I. inferior infarction has not been detected and II. age ≥ 17 years and III. -120° < frontal QRS axis < -30°

	E. (1point)		I. II.	the QRS duration in lead V5 or V6 \geq 100ms RBBB of any type is not present			
	F. (1point)		Ι.	the intrinsicoid deflection in V5 or V6 \geq 60ms			
		and	II.	there are no pathological Q waves			
				(see Myocardial Infarction section) in the corresponding lead.			
	Alternative Criteria						
	G. (4-5 Points)		I.	age ≥ 17 years			
		and	II.	90 ms < the overall QRS duration < 120 ms			
		and	III.	he R or R' amplitude in $aVL > 0.2mV$			
		and	IV.	the sum of max (R,R') amplitude in aVL			
				and max (S,S') amplitude in V3 > 2.8mV			
	Score 4 points if I, II, III and IV are true.						
Score 5 points if I, II, III and IV are true and II and IV exceed lower thresholds signifi							

Test G is an alternative to tests A to F if A-F did not result in diagnosis of LVH.

Statements

1. Left ventricular hypertrophy								
	(a)		score ≥ 5 points					
2. Possible left	2. Possible left ventricular hypertrophy							
	(a)		$4 \leqslant$ score < 5 points and there are ST					
			or T abnormalities in the lateral leads.					
3. Left ventricu	3. Left ventricular hypertrophy, possible digitalis effect							
	(a)		1(a) is true					
and	(b)		patient is on digitalis					
4. Possible left	t ventricular h	yperti	rophy, possible digitalis effect					
	(a)		2 (a) is true					
and	(b)		patient is on digitalis					
5. Left ventricu	ılar hypertrop	hy by	voltage only					
		I.	LVH score ≥ 4 points					
	and	II.	criteria B-F are falseor G is true					
	and	III.	there are no lateral ST-T changes					

6. Borderline high QRS voltage - probable normal variant

This statement replaces 1 or 2, if the following are true:

- I. the LVH score \leq 5 points
- and II. G or any part of A above is true
- and III. there is no BVH
- and IV. the patient is less than 35 years old
- and V. there are no ST-T changes
- and VI. there are no ST-T reasons for LVH set

12.2 Right ventricular hypertrophy

If WPW has been detected, this section is omitted.

The criteria for RVH are in the form of points awarded for each test. The points are to talled to give a final score.

The upper limits of normal voltage used for R and S amplitudes in the diagnosis of right ventricular hypertrophy are age dependent and can be made available in the form of continuous equations. A complete set of equations is too complex to include but as an example, the upper limit of S wave amplitude in Lead I is presented. The equation is valid from birth to 30 days.

$$LIM1 = [40 - 0.267 \text{ x Age(days)}]^2 \mu V$$

The following table is a guide to the various limits used in this section. Adult criteria are obtained using the higher values while paediatric criteria are derived from an age dependent value intermediate to the two lower limits.

	Birth	Adolescence	Age 60 years
LIM1	1.6 mV	0.482 mV	0.36 mV
LIM2	2.5 mV	1.5 mV	
LIM3	3.14 mV	0.78 mV	0.56 mV
LIM4	2.17 mV	1.6 mV	
LIM5	10.9	1.1	
LIM6	204°	90°	

For clarity, the criteria describe discrete thresholds and integer scores. However, as in other parts of the program, the discrete thresholds have been replaced by smooth continuous functions which return continuous scores. These are combined, where required, with other criteria using algebraic rules and the resulting overall score is used to determine the diagnostic statement that is output.

Criteria

A. (2 points) I. in Lead I, either S or S' > LIM1 and II. in Lead I, R > 0.1mV and III. in Lead I, |S| > R or |S'| > R'

B. (3 points) or			I. II.	in Lead I, either S or S' > 2.5*LIM1 with R > 0.1mV in V5, either S or S' > LIM2
		or	III.	Age < 18 years and in V5, 4*max (S,S') > max (R,R') where max (S,S') > 1.0 mV
N.B. (if bo	oth A	and B	are tri	ue, count only B).
C. (2 points)	(a)		I.	in lead V1, the R or R' amplitude > LIM3
		and	II.	T+ in V1 \leq 0.7mV (age 12-30 years), or 0.5mV (age \geq 30years)
or	(b)		I.	In V4R, R > LIM4
		and	II.	T+ in V4R \leq 0.7mV
D. (1 point)				$R^\prime > 0.1mV$ and $R^\prime > R$ in lead V1 and age ≥ 16 years
E. (2 points)	(a)		I.	in V1, the R/ S amplitude ratio LIM5 with S $> 0.1 \text{mV}$
		or	II.	in V1, Q and S = OmV and age > 5 years
and	(b)			in V1, either R or $R' > 0.4mV$,
and	(c)			T+ amplitude in V1 \leq 0.5mV
F. (3 points)				in V1, $ \textbf{Q} > 0.1\text{mV}$ and $\textbf{Q} \ge 25\text{ms},$ and $\textbf{R} \ge 0.25\text{mV}$
				with R-STj \ge 0.04mV and S = 0mV
G. (1 point)				in aVF, the P+ amplitude \geq 0.3mV
H. (1 point)			I.	in aVF, the ST junction is negative
		or	II.	in aVF, T- $<$ -0.1mV, and the T wave morphology is not +2
J. (3 points)	(a)		I.	in V2, STj < 0.02mV with downward slope < -5
		and	II.	in V2, T- < -0.1mV
		and	III.	age ≥ 5 years
		and	IV.	in aVF, STj < 0.15mV
or	(b)		I.	in V2, STj < -0.15 mV with downward slope < 0 $$
		and	II.	in V2, T- < -0.1 mV
		and	III.	age < 5 years
K. (1 point)				LIM6 < QRS axis < 270°

L. (1 point)		I.	in all the Leads I, II, and III, $\left S\right >0.2mV$
	or	II.	QRS axis $> 0^{\circ}$.
M. (4 points)	(a)	١.	age > 5 days and < 9 years
	an	d II.	In V1,V5 and V6, T+ $> 0.1 mV$ and T- = 0mV
or	(b)	١.	age ≤ 5 days
	an	d II.	In V1, T+ > 0.1 mV and T- = 0mV
	an	d III.	there is left axis deviation
Statements			
1. Right ventricu	ılar hypert	rophy	
	(a)		Score ≥ 5 points
2. Possible right	ventricula	ır hype	rtrophy
	(a)		4 ≤ score < 5 points
3. Right ventricu	ılar hypert	rophy,	possible digitalis effect
	(a)		1(a) is true
and	(b)		patient is on digitalis
4. Possible right	ventricula	ır hype	rtrophy, possible digitalis effect
	(a)		2(a) is true
and	(b)		patient is on digitalis
12.3 Bi	ventricu	ılar h	ypertrophy
Statements			
If LBBB or WPW i	s set true,	omit tl	nis section.

1. Biventricular hypertrophy

	(a)		I.	LV hypertrophy score ≥ 5 points
		and	II.	RV hypertrophy score \geq 5 points
or	(b)			the maximum QRS vector $>$ an age dependent limit A (see table)
or	(c)		I.	LV hypertrophy score > 11 points
		and	II.	the maximum QRS vector (in I, aVF, V2) $>$ age dependent limit B
				(see table).

2. Possible biventricular hypertrophy

	(a)			statements 1 is not true
and	(b)		I.	LV hypertrophy score ≥ 4 points
		and	II.	RV hypertrophy score ≥ 4 points

Table of age dependent limits	for max QRS vector
-------------------------------	--------------------

	Age < 30 years	30 ≤ Age < 40 years	Age ≥ 40 years
LIMIT A	6.0 mV	5.0 mV	4.5 mV
LIMIT B	5.5 mV	4.5 mV	4.0 mV

13 Myocardial infarction

In this section, there are three types of criteria used in the diagnosis of myocardial infarction. The first type uses criteria for acute ST elevation myocardial infarction (STEMI) in the absence of LBBB. The second uses Sgarbossa's criteria for an acute MI in the presence of LBBB and the third uses criteria based on Q waves and ST-T amplitudes.

STEMI criteria are modelled on the ACC/ESC criteria in the absence of LBBB and Sgarbossa's criteria in the presence of LBBB.

If Q waves are detected, then one of a number of statements may also be output, e.g.

*** INFERIOR INFARCT - POSSIBLY ACUTE ***

The criteria for these statements are given in detail in this chapter.

13.1 STEMI criteria

STEMI criteria were initially modelled on the recommendations¹ of the American College of Cardiology (ACC) and the European Society of Cardiology (ESC) in a consensus document entitled Myocardial Infarction Redefined. These criteria were based on increased ST elevation in two contiguous leads. Subsequent work in Glasgow^{2,3} introduced age and sex dependent criteria. As a result, in 2007, sex dependent criteria were included in the first Universal Definition of myocardial infarction⁴ and subsequently age and gender based criteria were included in the third universal definition of myocardial infarction in 2012. They remained in the fourth universal definition of 2019⁵. The new criteria use continuous equations for upper limits of normal ST amplitudes, measured at the J point as in the recommendations¹ as well as |ST/T| + |S/ST| ratios and |Q| + |S| amplitudes and have been extended to included racial differences among Black, Oriental and Caucasian individuals of both sexes⁶.

The upper limits of normal ST amplitudes are determined from a set of equations. There is a different equation for each lead. As an example, the equation for lead V1 for male patients is given here.

Age (years)	Limit in µV
20 ≤ age ≤ 60	(-1.0) * age (in years) + 190
> 60	(-1) * 60 + 190 = 130
< 20	(-1) * 20 + 190 = 170

For female patients, a constant value is used as a limit across all ages. The constant is lead dependent. For V1, the limit is 100µV.

A second set of thresholds for ST amplitudes is used to determine which critical value statement (see section headed CRITICAL VALUES) is output when the STEMI criteria are met. If these (higher) limits are reached then the critical value statement ACUTE STEMI is reported. If the upper limits for normal ST amplitudes are exceeded, but not the higher limits, then the critical value statement POSSIBLEACUTE STEMI is reported.

- ¹ Joint ESC/ACC Committee. Myocardial infarction redefined. European Heart J 2000; 21:1502-1513.
- ² Macfarlane PW, et al. Modification of ACC/ESC criteria for acute myocardial infarction. J Electrocardiol 2004;37(Suppl):98-103.
- ³ Macfarlane PW, et al. Evaluation of age and sex dependent criteria for ST elevation myocardial Infarction. Computers in Cardiology 2007;34:293-296.
- ⁴ Thygesen K et al. Universal definition of myocardial infarction. Circulation 2007;116:2634-2653.
- ⁵ Thygesen K et al. Fourth universal definition of myocardial infarction (2018). European Heart Journal 2019;40:237–269
- ⁶ Macfarlane PW et al. Racial differences in the ECG selected aspects. J Electrocardiol 2014;47:809-814.

The criteria for STEMI are omitted under the following conditions:

- presence of WPW
- presence of LBBB
- QRS duration > 180ms
- age ≤ 18 years
- presence of IVCD and overall QRS duration > 140ms
- (except if very high ST values for leads where an individual lead QRS duration < 110ms)

NSTEMI

An acute myocardial infarction can be detected in the absence of ST elevation. The term non ST elevation myocardial infarction (NSTEMI) can be found in the joint ESC/ACC paper dealing with myocardial infarction redefined¹. The criteria linked with NSTEMI in the program relate to marked ST depression which would be reflected in ST elevation in leads oppositely directed to those with ST depression but which may not be recorded. They can be found in this criteria handbook in the section on ST DEPRESSION.

13.2 Sgarbossa's criteria

If LBBB is present, then the criteria for acute MI as given by Sgarbossa et al² are used.

The criteria are as follows:

- ST segment elevation > 1mm that is concordant with the QRS complex (score 5)
- ST segment depression > 1mm in leads V1, V2 or V3 (score 3)
- ST segment elevation > 5 mm that is discordant with the QRS complex (score 2)

The ST amplitude is measured at the J point as per the original publication¹. According to Sgarbossa et al, any score > 3 implies an acute MI. The higher the score, the greater the likelihood of an acute MI.

These criteria are omitted under the following conditions:

- presence of WPW
- presence of Brugada pattern
- QRS duration > 180ms
- Heart Rate > 150bpm

13.3 Q wave criteria

Omit this section if WPW is present.

Omit leads V2-V4 if LBBB is present.

Statements mentioning myocardial infarction are not output in the paediatric age group, in which criteria for abnormal Q waves are checked and if any are found to be true, the statement " Abnormal Q waves " is produced.

It should also be noted that neural network software is used in addition to the criteria listed overleaf.

A neural network utilising 9 input measurements, namely, the Q amplitude and duration as well as the Q/ R ratio in Leads II, III and aVF has been trained to check for the presence of inferior myocardial infarction. However, the output from the network is not used in isolation. It is combined with the diagnosis made by the deterministic criteria listed in the following pages.

- ¹ Joint ESC/ACC Committee. Myocardial infarction redefined. European Heart J 2000; 21:1502-1513.
- ² Sgarbossa EB, Pinski SL, Barbagelata A, et al. Electrocardiographic diagnosis of evolving acute myocardial infarction in the presence of left bundle branch block. NEngl J Med 1996;334:481-7

If the neural network detects inferior infarction, it is given a level of PROBABLE infarction. The level of certainty of the deterministic criteria is then compared with the neural network level and whichever is the higher is retained in the diagnosis. In addition, however, a neural network diagnosis of inferior infarction in the absence of deterministic criteria for infarction results in further checks being made to ensure that a Q wave is indeed present in aVF. This is to ensure that maximum specificity is obtained.

In the case of anterior myocardial infarction, a similar hybrid approach has been adopted. In this case, however, the network has 42 inputs. There are six measurements from each of 7 leads, namely, I, aVL, and V2-V6. These six measurements consist of the Q amplitude and duration, the R wave amplitude, the ST amplitude and the maximum positive and minimum negative T wave amplitudes. However, if the standard criteria listed for the different forms of anterior infarction, e.g. anteroseptal, anterior and septal, are already positive, then the neural network is not utilised. If conventional criteria are negative, then the neural network diagnosis is used. In this case, a check has to be made to see whether there are indeed Q waves or whether there are low R waves so that the appropriate reason statement can be produced.

For clarity, the criteria describe discrete thresholds and integer scores. However, as in other parts of the program, the discrete thresholds have been replaced by smooth continuous functions which return continuous scores. These are combined, where required, with other criteria using algebraic rules and the resulting overall score is used to determine the diagnostic statement that is output.

13.3.1 Q waves in inferior and lateral leads

Criteria

Q1	(a)		I.	Q>35ms and $ Q/R >1/5$
		or	II.	Q > 40ms
		or	III.	T axis < 0°, and Q > 28ms, and $ \text{Q}/\text{R} $ > 1/4 in aVF
and	(b)			Q > 0.09mV
and	(c)			peak to peak QRS > 0.15mV
Q2	(a)		I.	Q>35ms and $ Q/R >1/5$
		or	II.	Q > 30ms and $ Q/R > 1/3$
and	(b)			Q > 0.2mV
and	(c)			peak to peak QRS > 0.15mV
Q3	(a)			Q > 26ms or Q/R > 1/5
and	(b)			Q > 0.11mV
and	(c)			peak to peak QRS > 0.15mV
Q4	(a)		I.	$Q \ge 30ms$ and T- < -0.1mV
		or	II.	Q/R > 1/3 and $Q > 0.02secs$
and	(b)			Q > 0.075mV
and	(c)			peak to peak QRS > 0.2mV
and	(d)		I.	T- < -0.05mV
		or	II.	ST > 0.06mV
Q5	(a)			$ \mathbb{Q}/\mathbb{R} > 1/4$ in II and $ \mathbb{Q} > 0.1 \text{mV}$
and	(b)			QRS axis < 0°
and	(c)			Age > 18 years

Q6	(a)		I.	R amplitude in II < R amplitude in III
		or	II.	QRS axis ≤ -30°
		or	III.	R < 0.20mV in III.
		or	IV.	Age > 18 years
or	(b)		I.	$Q \geqslant 15ms$ and $R < 0.1mV$ and $S > 20ms$ in aVF
		and	II.	peak-peak QRS > 0.15mV in aVF
		and	III.	Age > 18 years
Q7	(a)			T axis < -10°
and	(b)			R < 0.90mV in II
and	(c)			$ \mbox{Q}/\mbox{R} $ $>$ 1/5 and $ \mbox{Q} $ $>$ 0.05mV in any 2 of II, III, or aVF
and	(d)			Rhythm is not atrial flutter
and	(e)			Age > 18 years

Similar criteria apply when a small primary r is present. In this case, S replaces Q and R' replaces R.

Inferior infarction statements

The tests for Q1 to Q4 are caried out on II, III, aVF. The following statements therefore refer to findings in these leads.

1. *** INFERIOR INFARCT – POSSIBLY ACUTE ***

	A.	Pres	ence o	of Q w	aves
		(a)		I.	there are two or more Q1
			or	II.	there is at least one Q1 and one Q2
	or	(b)		I.	there is one Q1 and at least one Q3 or Q4 $$
			or	II.	there are two or more Q2
			or	III.	there is one Q2 and one Q3
			or	IV.	there is one Q1 from II or aVF
			or	V.	there is one Q5
			or	VI.	there is one Q2 and one Q4
			or	VII.	there are two or more Q3 with $ \text{Q/R} > 1/4$
			or	VIII.	there is one Q6 or one Q7
and	B.	Acut	e ST e	levatio	on MI suspected
		(a)			the STEMI criteria are met.
and	C.	(a)			LBBB is not present
2. Inferior	infarc	t – ag	e und	etermi	ned
		(a)			1 A(a) is true
	and	(b)			STEMI criteria are not met
	and	(c)			LBBB is not present
3. Possible inferior infarct – age undetermined					
		(a)			1 A(a) or 1A(b) is true
	and	(b)			LBBB is present

4. Small inferior Q waves : infarct cannot be excluded 1 A(a) is false and 1A(b) is true (a) STEMI criteria are not met and (b) LBBB is not present and (c) In lead III or avF, there is a Q wave ≥ 0.02 secs, and (d) or an S wave ≥ 0.02 secs where R wave < 0.04 mV 5. Small inferior Q waves noted: probably normal ECG 4 is true (a) and (b) Ι. there are no other diagnostic statements II. there is only one other diagnostic statement: or Small lateral Q waves noted: probably normal ECG there is no T wave inversion in the inferior leads and (c) T axis $> 5^{\circ}$ and (d) in aVF, Q/R amplitude ratio < 0.5 and there is an R wave in aVF and (e) Ι. or Ш. in aVF. S/R' amplitude ratio < 0.5 and the R wave in aVF < 0.05mV andthere is an R' wave in aVF. and (f) the rhythm is sinus This statement replaces statement 4, if true. 6. Abnormal Q waves of undetermined cause (a) if any of the previous statements is true and (b) the age of the patient is less than 18 years Replace the previous statement by this one, if true. 7. Inferior Q waves may be due to cardiomyopathy any of the statements 2, 4 or 5 is true (a) the age of the patient is between 18 and 40 years and (b) Ι. there is a Q wave but no R or S waves in leads II or aVF and (c) or II. there are Q equivalent waves and small R waves in II or aVF and (d) there is no T wave inversion in leads II or aVF Replace statement 2, 4 or 5 by this one, if true. Inferior infarction statement addition 8. Q waves may be due to cardiomyopathy if any of statements 1-6 is set (a) there is a clinical classification of cardiomyopathy and (b)

and (c) there is no T wave inversion in II or aVF

Lateral infarction statements

The tests for Q1 to Q4 are carried out on I, aVL, V5, V6.

The following statements therefore refer to findings in these leads.

1. *** LATERAL INFARCT - POSSIBLY ACUTE *** Α. Presence of Q waves I. there are two or more Q1 (a) there is one Q1 and at least one Q2 or II. there is one Q1 and at least one Q3 or Q4 (b) I. or there are two or more Q2 Ш. or there is one Q2 and one Q3 or III. IV. there is one Q2 and one Q4 or there are two or more Q3 with |Q/R| > 1/4V. or there is one or more Q1 from I, V5 or V6 VI. or and B. Acute ST elevation MI suspected the STEMI criteria are met. (a) 2. Lateral infarction - age undetermined 1 A(a) is true (a) and (b) STEMI criteria are not met 3. Possible lateral infarction - age undetermined (a) 1 A(a) is false and 1 A(b) is true STEMI criteria are not met and (b) 4. Small lateral Q waves noted: probably normal ECG (a) 3 is true there are no other diagnostic statements and (b) I. or II. there is only one other diagnostic statement: Small inferior Q waves noted: probably normal ECG there is no T wave inversion in the lateral leads and (c) T axis < 85° and (d) in I, there is a Q wave ≥ 0.02 secs and an R wave in I and (e) Ι. and the Q/R amplitude ratio < 0.5in I, there is an S wave ≥ 0.02 secs and the R wave < 0.04 mV or 11. and the S/R' amplitude ratio < 0.5 the rhythm is sinus and (f) This statement replaces statement 3, if true. 5. Abnormal Q waves of undetermined cause if any of the previous statements is true (a) the age of the patient is less than 18 years and (b)

Replace the previous statement by this one, if true.

6. Lateral Q waves may be due to cardiomyopathy

	(a)	any of the statements 2, 3 or 4 is true		
and	(b)	the age of the patient is between 18 and 40 years		
and	(c)	there is a Q wave but no R or S waves in lead I		
and	(d)	there is no T wave inversion in lead I		
Replace statement 2, 3 or 4 by this one, if true.				

Lateral infarction statement addition

7. Q waves may	be due to	cardiomyopathy	
----------------	-----------	----------------	--

	(a)	if any of statements 1-5 is set
and	(b)	there is a clinical classification of cardiomyopathy
and	(d)	there is no T wave inversion in the lateral leads

13.3.2 Q waves in anteroseptal, anterior or septal leads

Criteria

VQ1	(a)		I.	Q > 0.2mV or $ Q > 0.15mV$ and $ Q/R > 1/2$
		and	II.	Q > 30ms
		and	III.	peak to peak amplitude > 0.2mV
or	(b)		I.	R = 0
		and	II.	S > 0.2mV
		and	III.	S > 30ms
		and	IV.	peak to peak amplitude > 0.2mV
VQ2	(a)		I.	$ \mathbf{Q} > 0.14 \mathrm{mV}$
		and	II.	Q > 20ms
		and	III.	Q/R > 1/5
		and	IV.	peak to peak amplitude > 0.2mV
or	(b)		I.	R < 0.065mV
		and	II.	S > 0.14mV
		and	III.	S > 20ms
		and	IV.	S/R' > 1/5
VQ3	(a)		I.	R < 0.11mV
		and	II.	$R^{\prime} < 2R$ amplitude, or RBBB is present
		and	III.	R/S < 0.125
		and	IV.	the peak to peak amplitude $> 0.2mV$
		and	V.	RVH is not present
VQ4	(a)		I.	R in V(n) - R in V(n+1) > 0.05mV
				in the adjacentprecordial ead, (e.g. V3 < V2)
		and	II.	R < 0.3 mV in those two leads
		and	III.	R' < R in those two leads

QRVH	(a)		I.	$R>0.3mV$ with $S=0mV$ or $R<0.1mV$ with $R^\prime>0.3mV$
		and	II.	RBBB and IVCD are not present
		and	III.	ST in V2 \leq 0.12mV or ST $< 1/2$ T+
or	(b)		I.	R < 0.3mV or S is not $0mV$
		and	II.	in Lead I, S or S' < -0.5mV
		and	III.	there is a clinical classification of congenital heart disease, rheu- matic heart disease, pericarditis, respiratory disease, implanted pacemaker, pulmonary embolism, post-operative changes, cardio- myopathy or other/not known
		and	IV.	RBBB and IVCD are not present
PRWP	(a)		I.	Male and R V3 $<$ 0.3mV and R' V3 $<$ 0.3mV
		or	II.	Female and R V3 $<$ 0.25mV and R' V3 $<$ 0.25mV
and	l (b)			None of VQ1-VQ4 is true

Anteroseptal infarction statements

The tests for VQ1 - VQ4 are applied to V2 - V4.

The following statements therefore apply to findings in these leads.

1. *** ANTEROSEPTAL INFARCT – POSSIBLY ACUTE ***

	A.	Presence of Q waves				
		(a)		VQ1 is true for V2 and one of V3, V4 with QRVH false in V1		
	or	(b)	I.	one VQ1 is true, and there is a VQ in V2 and in V3 or V4 with QRVH false in V1		
		or	II.	VQ2(a) is true in V2 and one of V3, V4 with QRVH false inV1		
		or	III.	VQ2(b) is true in V2 and one of V3, V4		
а	nd B.	Acute ST e	elevati	on MI suspected		
		(a)		the STEMI criteria are met.		
2. Ante	roseptal	infarct – ag	e und	etermined		
		(a)		1 A(a) is true		
	and	(b)		STEMI criteria are not met		

3. Possible anteroseptal infarct – age undetermined

(a)	1 A(a) is false and 1 A(b) is true
-----	------------------------------------

and (b) STEMI criteria are not met

4. Cannot rule o	ut anteroseptal inf	arct – age undetermined
	(a)	if any of the statements 1-3 is set true
and	(b)	LVH is present
and	(c)	ST < 1/2 T+ in V2 and V3
and	(d)	there is not a clinical classification of either congenital heart dis- ease or of rheumatic heart disease
and	(e)	the age of the patient is 18 years or over
and	(f)	VQ1 is false in both V3 and V4
and	(g)	there is not clockwise cardiac rotation
The	above statement r	eplaces any of 1-3, if true
5. Abnormal Q w	aves of undetermi	ned cause
	(a)	any of the above statements is true,
and	(b)	the age of the patient is less than 18 years
The	above statement r	eplaces any of 1-4, if true.
6. Anteroseptal	QRS changes may	be due to ventricular hypertrophy
·	(a)	any of the above statements is true
and	(b)	there is moderate or high T+ in V2-V4
and	(c)	ST < 1/2 T + in V2, V3
and	(d)	there is not a clinical classification of myocardial infarction but there is of rheumatic heart disease
The	above statement r	eplaces any previous one, if true.
7. Anteroseptal	QRS changes may	be due to corrected transposition
	(a)	if any of the above statements is true
and	(b)	there is moderate or high T+ in V2-V4
and	(c)	ST < 1/2 T+ in V2 and V3
and	(d)	there is not a clinical classification of myocardial infarction but there is a classification of congenital heart disease
The	above statement r	eplaces any previous one, if true.
8. QRS changes	may be due to LVH	but cannot rule out anteroseptal infarct
	(a)	if any of the statements 1-4 is set true
and	(b)	LVH is present with secondary ST-T changes and $ S $ in $V2 > 0.2 mV$
and	(c)	ST < 1/2 T+ in V2 and V3,
and	(d)	there is not a clinical classification of either congenital heart dis- ease or of rheumatic heart disease
and	(e)	the age of the patient is 18 years or over
and	(f)	there is not clockwise cardiac rotation and VQ1 is false in V4 $$
The	above statement r	eplaces any of 1-4, if true.

9. Poor R wave progression - cannot rule out anteroseptal infarct

	(a)	if any of the statements 1-4 is set true			
and	(b)	ST < 1/2 T+ in V2 and V3			
and	(c)	clockwise cardiac rotation is true, and VQ1 false in V4 $$			
The above statement replaces any of 1-4, if true.					

10. Poor R wave progression consistent with pulmonary disease

	(a)	9(a) to (c) are true
and	(b)	there is a clinical classification of respiratory disease but not of myocardial infarction
		myocardial infarction

The above statement replaces 1-4, if true.

Anteroseptal infarction statement addition

11. Q waves may be due to cardiomyopathy

	(a)	any of the anteroseptal infarction statements is set
and	(b)	there is a clinical classification of cardiomyopathy
and	(c)	there is moderate or high T+ in V2-V4

Anterior myocardial infarction statements

The tests for VQ1-VQ4 are applied to V3, V4. The following statements therefore apply to findings in these leads.

1. *** ANTERIOR INFARCT – POSSIBLY ACUTE ***

	A.	Presence of Q waves		
		(a)		VQ1 is true for V3 and V4 with QRVH false in V1
	or	(b)	I.	VQ1 is true for V3 or V4 with QRVH false in V1
		or	II.	VQ4 is true for V2, V3 and V3, V4
		or	III.	VQ2(a) is true in V3 or V4 with QRVH false in V1
		or	IV.	VQ2(b) is true in V3 or V4 or VQ3 is true in V3 or V4 (except for fe- males with T + > 0.05mV in V3 and T morphology = 1 in V3, where there is not a clinical classification of myocardial infarction)
		or	V.	VQ4 is true for V2, V3 or V3, V4 for males or for V4, V5 for males or females
		or	VI.	PRWP is true and R $<$ 0.4mV in I and not RVH and (S $<$ 0.15mV in I or R $>$ 0.4mV in V4 or T+ $<$ 0.05mV in V2-V4)
		or	VII.	PRWP is true and R \geq 0.4mV in I and [(ST $>$ 0.05mV and ST $>$ T+/2 in V3 or V4) or (LVH is present and R $<$ 0.15mV in V4)]
and	B.	Acute ST e	elevati	on MI suspected
		(a)		the STEMI criteria are met.
2. Anterior infarct – age undetermined			ined	
		(a)		1 A(a) is true
	and	(b)		STEMI criteria are not met

3. Possible ante	rior infarct - age ı	undetermined			
A.	(a)	1 A(a) is false and 1 A(b) is true			
and	(b)	STEMI criteria are not met			
or B.	(a)	if statement 1or 2 is true			
and	(b)	ST < 1/2 T+ in V3 and V4			
and	(c)	clockwise cardiac rotation is true, and VQ1 false in V4			
If 3E	3 is true, statemen	t 3 replaces statement 1 or 2.			
4. Cannot rule o	ut anterior infarct	– age undetermined			
	(a)	if any of the statements 1-3 is set true			
and	(b)	LVH is present			
and	(c)	ST < 1/2 T+ in V3 and V4			
and	(d)	there is not a clinical classification of either congenital heart dis- ease or of rheumatic heart disease			
and	(e)	the age of the patient is 18 years or over			
and	(f)	VQ1 is false in both V3 and V4			
and	(g)	there is not clockwise cardiac rotation			
and	(h)	VQ2 or VQ4 is true for V3			
The	above statement r	eplaces any of 1-3, if true.			
5. Abnormal Q w	vaves of undetermi	ined cause			
	(a)	any of the above statements is true,			
and	(b)	the age of the patient is less than 18 years			
The	above statement r	eplaces any of 1-4, if true.			
6. Anterior QRS	changes may be d	ue to ventricular hypertrophy			
	(a)	any of the above statements is true			
and	(b)	there is moderate or high T + in V3, V4			
and	(c)	ST < 1/2 T + in V3 and V4			
and	(d)	there is not a clinical classification of myocardial infarction but there is of rheumatic heart disease.			
The	above statement r	eplaces any previous one, if true.			
7. Anterior QRS	changes may be d	ue to corrected transposition			
	(a)	if any of the above statements is true			
and	(b)	there is moderate or high T+ in V3, V4			
and	(c)	ST < 1/2 T+ in V3, V4			
and	(d)	there is not a clinical classification of myocardial infarction but there is of congenital heart disease			
The	The above statement replaces any previous one, if true.				

8. QRS changes V3/V4 may be due to LVH but cannot rule out anterior infarct

	(a)	if any of the statements 1-4 is set true or VQ3 is true	
and	(b)	LVH is present with secondary ST-T changes and $ S $ in $V2 > 0.2mV$	
and	(c)	ST < 1/2 T+ in V3 and V4	
and	(d)	there is not a clinical classification of either congenital heart dis- ease or of rheumatic heart disease	
and	(e)	the age of the patient is 18 years or over	
and	(f)	there is not clockwise cardiac rotation, and VQ1 is false in V3 and V4 $$	
The above statement replaces any of 1-4, if true.			

9. Anterior QRS changes are probably related to pulmonary disease

	(a)	7(a) to (c) are true
and	(b)	there is a clinical classification of respiratory disease but not of myocardial infarction

The above statement replaces 1-4, if true.

10. Poor R wave progression

	(a)		I.	VQ3 or VQ4 or PRWP is true
		and	II.	R or R' in $I > 0.4mV$
		and	III.	there is moderate or high T+ in V2-V4
		and	IV.	there is no significant ST elevation V2-V4
		and	V.	$0.25mV < R \leqslant 0.4mV$ in V4 for males or $0.25mV < R \leqslant 0.3mV$ in V4 for females
		and	VI.	there is no LVH
		and	VII.	there is no inferior or lateral infarction
or	(b)		I.	VQ3 or VQ4 or PRWP is true
		and	II.	R or R' in I $> 0.4mV$ and R or R' in V4 $< 0.25mV$
		and	III.	there is no T inversion in V2-V4
		and	IV.	there is no significant ST elevation V2-V4
		and	V.	there is no LVH
		and	VI.	there is no inferior or lateral infarction

Anterior infarction statements addition

1. Q waves may be due to cardiomyopathy

	(a)	any of the anterior infarction statements is set
and	(b)	there is a clinical classification of cardiomyopathy
and	(c)	there is moderate or high T+ in V3, V4

Septal infa	rctior	n statem	ents	
1. *** SEP	TAL IN	IFARCT -	POSSIBL	Y ACUTE ***
	A.	Presen	ce of Q w	aves
		(a)		VQ1 is true for V2 with QRVH false in V1
	or	(b)		There is VQ2a in V2 with QRVH false in V1
and	B.	Acute S	ST elevati	on MI suspected
		(a)		the STEMI criteria are met.
2. Cannot	rule o	ut septal	infarct -	- age undetermined
	A.	(a)		1 A(a) or (b) is true
	and	(b)		LVH is present
	and	(c)		$ST < 1/2\ T+$ in V2 and there is not an age undetermined infarct
	and	(d)		there is not a clinical classification of either congenital heart dis- ease or of rheumatic heart disease
	and	(e)		the age of the patient is 18 years or over
or	B.	(a)		1 A(a) or (b) is true
	and	(b)		STEMI criteria are not met
	and	(c)	I.	RBBB or RVH is present
		0	r II.	LVH with repolarisation is not present and there is ${\rm T}$ inversion in ${\rm V2}$
	The	above st	atement i	replaces 1, if true.
3. Q in V1/	V2 ma	iy be nor	mal varia	ant but septal infarct cannot be excluded
		(a)		1 A(a) or (b) is true
	and	(b)		STEMI criteria are not met
	and	(c)		RBBB, RVH and LVH are not present
	and	(d)		the R and R' amplitude in V3 \leq 0.3mV
	and	(e)		there is no T inversion in V2
4. Q in V1/	V2 ma	iy be due	e to lead	placement error though septal infarct cannot be excluded
		(a)		1 A(a) or (b) is true
	and	(b)		STEMI criteria are not met
	and	(c)		RBBB, RVH and LVH are not present
	and	(d)		R or R' amplitude in V3 > 0.3mV
	and	(e)		there is no T inversion in V2
5. Q in V1/	V2 ma	iy be due	e to LVH t	hough septal infarct cannot be excluded
		(a)		1 A(a) or (b) is true
	and	(b)		2 is false
	and	(c)		STEMI criteria are not met
	and	(d)		LVH with repolarisation is present
	and	(e)		RBBB and RVH are not present

6. Abnormal Q waves of undetermined cause

	(a)	any of the above statements is true,
and	(b)	the age of the patient is less than 18 years
The a	above statement r	eplaces any of 1-5, if true.

7. Septal QRS changes may be due to ventricular hypertrophy

	(a)	any of the above statements 2-5 is true
and	(b)	there is no T- in V2
and	(c)	$ST < 1/2 \ T+$ in V2 and there is not an age undetermined infarct
and	(d)	there is not a clinical classification of myocardial infarction but there is of rheumatic heart disease

The above statement replaces statements 2-5, if true.

8. Septal QRS changes may be due to corrected transposition

	(a)	if any of the statements 2-5 is set true
and	(a)	if any of the above statements 2-5 is true
and	(b)	there is no T- in V2
and	(c)	$ST < 1/2\ T+$ in V2 and there is not an age undetermined infarct
and	(d)	there is not a clinical classification of myocardial infarction but there is of congenital heart disease

The above statement replaces statements 2-5, if true.

9. QRS changes in V2 probably due to LVH but cannot rule out septal infarct

	(a)	if any of the statements 2-5 is set true
and	(b)	LVH is present and $ Q $ in V2 > 2.0mV
and	(c)	ST < 1/2 T+ in V2
and	(d)	there is not a clinical classification of either congenital heart dis- ease or of rheumatic heart disease
and	(e)	the age of the patient is 18 years or over
ть		

The above statement replaces statements 2-5, if true.

10. Poor R wave progression – cannot rule out septal infarct

	(a)	if any of the statements 2-5 is set true			
and	(b)	ST < 1/2 T+ in V3 and V4			
and	(c)	clockwise cardiac rotation is true, and VQ1 false in V4 $$			
and	(d)	the age of the patient is 18 years or over			
The above statement replaces any of 2-5, if true.					

reasion moving due to nulmonary dis . n

11. Poor R wave progression may be due to pulmonary disease	11.	Poor R	wave	progression	may	be	due	to	pulmonary disease
---	-----	--------	------	-------------	-----	----	-----	----	-------------------

	(a)	10(a) to (c) are true				
and	(b)	there is a clinical classification of respiratory disease but not of myocardial infarction				
and	(c)	the age of the patient is 18 years or over				
The above statement replaces 2-5, if true.						

Septal infarction statement addition

1. Q waves may be due to cardiomyopathy

	(a)	any of the septal infarction statements is set
and	(b)	there is a clinical classification of cardiomyopathy
and	(c)	there is moderate or high T+ in V2

13.4 Posterior myocardial infarction

Criteria

PMI1		(a)		I.	R in V1 > 40ms
			and	II.	R in V1 > $0.8mV$
			and	III.	T+ in V1 > $0.5mV$
	and	(b)		I.	R in V2 > 40ms
			and	II.	R in $V2 > 1mV$
			and	III.	T+ in V2 > $0.8mV$

Posterior infarction statements

If there are inferior or lateral infarct statements or RBBB or RVH, omit Statement 1.

1. Possible posterior infarct – age undetermined (a) PMI1 is true

Posterior infarction statement additions

2 and 3 are additions to any inferior or lateral infarction statement only.

2. Possible posterior extension of infarct

	(a)	PMI1 is set true
and	(b)	there is inferior or lateral myocardial infarction

3. Tall R V1/V2 probably reflect the infarct

	(a)	RVH is true, with tall R in V1 or V2				
and	(b)	there is inferior or lateral myocardial infarction				
and	(c)	RBBB is not present				
If 3 is true, then RVH is set false.						

13.5 Anterolateral myocardial infarction

This section is entered if the following criteria are met.

	(a)		I.	there is a Q1 in V5
		or	II.	there is a Q2 in V5 with lateral myocardial infarction true
and	(b)		I.	there is a VQ1 or VQ2 in V4
		or	II.	there is a VQ3 in V4 or VQ4 in V3, V4

Any anterolateral statement will suppress the separate lateral, anteroseptal, and anterior statements.

1. *** ANT	EROLA	ATERAL	_ INFA	RCT –	POSSIBLY ACUTE ***			
	A.	Pres	resence of Q waves					
		(a)		I.	in I, aVL, V5, V6 there are two or more Q1 or at least one Q1 and Q2			
			or	II.	VQ1 is true for [V2 and (V3 or V4)] or (V3 and V4) with QRVH false for V1 $$			
	or	(b)		I.	in I, aVL, V5, V6 there is one Q1 and at least one Q3 or Q4			
			or	II.	in I, aVL, V5, V6 there are two or more Q2			
			or	III.	in I, aVL, V5, V6 there is one Q2 and one Q3			
			or	IV.	one VQ1 is true, and there is a VQ in V2 and in V3 or V4 with QRVH false in V1			
			or	V.	VQ1 is true for V3 or V4 with QRVH false in V1			
			or	VI.	VQ4 is true for V2, V3 or V3, V4			
and	B.	Acut	e ST e	levati	on MI suspected			
		(a)			the STEMI criteria are met.			
2. Anterola	iteral	infarc	t – ag	e unde	etermined			
		(a)			1 A(a) is true			
	and	(b)			STEMI criteria are not met			
3. Possible	antei	rolater	ral inf	arct –	age undetermined			
		(a)			1 A(a) is false and 1 A(b) is true			
	and	(b)			STEMI criteria are not met			
4. Abnorma	al Q w	aves o	of und	eterm	ined cause			
		(a)			if any of the previous statements is set true			
	and	(b)			the age of the patient is less than 18 years			
Anterolate	ral inf	arctio	on sta	temen	t addition			
1. Q waves	may	be due	e to ca	ardiom	yopathy			
		(a)			any of the anterolateral infarction statements is set			

	(a)	any of the anterolateral infarction statements is set
and	(b)	there is a clinical classification of cardiomyopathy
and	(c)	there is moderate or high T+ in anterolateral leads

Extensive myocardial infarction 13.6

This section is entered if the following criteria are met.							
	(a)		there is inferior infarction				
and	(b)		there is lateral infarction				
and	(c)		there is anterior or anteroseptal infarction				
1. *** EXTENSIV	E INFARCT –	POSS	IBLY ACUTE ***				
	(a)	I.	there is inferior or lateral infarction				
	and	II.	there is anteroseptal infarction				
and	(b)		the STEMI criteria are met.				
2. Extensive infa	rct - age ur	ndeter	mined				
	(a)	I.	there is inferior or lateral infarction				
	and	II.	there is anteroseptal infarction				
and	(b)		the STEMI criteria are not met				
3. Possible exter	nsive infarct	- age	e undetermined				
	(a)		weaker Q wave criteria are met in the inferior and anteroseptal leads				
and	(b)		the STEMI criteria are not met				
4. Abnormal Q w	aves of und	eterm	ined cause				
	(a)		if any of the previous statements is set true				
and	(b)		the age of the patient is less than 18 years				
The	The above statement replaces any of 1-3, if true.						

Extensive infarction statement addition

1. Q waves may be due to cardiomyopathy

	(a)	any of the extensive infarction statements is set
d	(b)	there is a clinical classification of cardiomyopathy

i	and	(b)	there is a clinical classification of cardiomyopa
		. ,	

and	(c)	T waves are not inverted.
-----	-----	---------------------------

14 ST abnormalities

There are 3 sets of criteria used to determine the presence of ST abnormalities. The first uses the criteria for acute ST elevation as used to indicate myocardial infarction (STEMI). This is described in the chapter MYOCARDIAL INFARCTION. The second set of criteria is used to determine if the early repolarisation pattern of end QRS notching or slurring is present. The third criterion uses a scoring system for the ST elevation and depression in each lead. This scoring system uses the limits of normal ST amplitudes and the slope of the ST segment to determine a score varying from -3.0 to 3.0. For ST elevation in adult ECGs, the limits used are the same as in the STEMI criteria and are dependent on age, gender and lead. For paediatric ECGs and ST depression, the limits used are dependent on the age of the patient and on the wall i.e. inferior, lateral or anterior. The score gives an indication of the degree of elevation or depression and is based on a smoothed function using multiple variables.

Using these criteria, there are 4 categories of ST elevation used to determine which statement is output. These are the STEMI elevation, end QRS notching or slurring, marked ST elevation and moderate ST elevation.

End QRS notching/slurring is defined as follows: In the absence of LBBB, RBBB, Brugada pattern, a clinical classification of myocardial infarction and a clinical classification of pericarditis, end QRS notching/slurring is defined as:

1.	(a)	The last component of the QRS complex is an R wave
and	(b)	The R wave duration > 40msecs
and	(c)	There is a notch or slur on the downward slope of the R wave
and	(d)	The notch or slur has a minimum allowed amplitude of 0.1mV and a maximum of 0.5mV

Marked and moderate elevation are defined as follows:

In the absence of LBBB, RBBB, Brugada pattern or any Q wave myocardial infarction,

Marked ST elevation is defined as:

	1.	(a)			a high score for ST elevation in 2 or more of leads I, II, III, aVL, aVF, V5, V6
	and	(b)		I.	there is no LVH
			or	II.	there is a clinical classification of myocardial infarction
			or	III.	here is a clinical classification of pericarditis
			or	IV.	the QRS axis is positive
or	2.	(a)			there is a high score for ST elevation in 2 or more of V2, V3 and V4 $$
	and	(b)		I.	there is no LVH
			or	II.	there is a clinical classification of myocardial infarction
			or	III.	there is a clinical classification of pericarditis

Moderate ST elevation is defined as:

	1.	(a)			a moderate score for ST elevation in 2 or more of leads I, II, III, aVL, aVF, V5, V6
	and	(b)		I.	there is no LVH
			or	II.	there is a clinical classification of myocardial infarction
			or	III.	there is a clinical classification of pericarditis
			or	IV.	the QRS axis is positive
or	2.	(a)			there is a moderate score for ST elevation in 2 or more of V2, V3 and V4
	and	(b)		I.	there is no LVH
			or	II.	there is a clinical classification of myocardial infarction
			or	III.	there is a clinical classification of pericarditis

Statements (reasons)

In the diagnostic output relating to ST abnormalities, there is a 'reason' statement printed above or beside the diagnostic statement, e.g.

Inferior ST elevation.

This is essentially integral to the diagnostic statement that follows, e.g.

Inferior ST elevation, CONSIDER ACUTE INFARCT.

The following are the 'reason' comments.

1. Inferior ST elevation							
	(a)	Q wave inferior infarction is not true					
and	(b)	there is acute, marked or moderate ST elevation in the inferior leads					
2. Lateral ST ele	vation						
	(a)	${\tt Q}$ wave lateral and anterolateral infarction are not true					
and	(b)	there is acute, marked or moderate ST elevation in the lateral leads					
3. Anteroseptal S	ST elevation						
	(a)	there is acute, marked or moderate ST elevation in the anteroseptal leads					
4. Anterior ST el	evation						
	(a)	3 is not true					
and	(b)	there is acute, marked or moderate ST elevation in the anterior leads					
5. Septal ST elev	ration						
	(a)	3 is not true					
and	(b)	there is acute, marked or moderate ST elevation in the septal leads					
6. Widespread ST elevation							
	(a)	there is acute, marked or moderate ST elevation in the inferior leads					
and	(b)	there is acute, marked or moderate ST elevation in the anterolateral leads					

7. Anterolateral	ST elev	vation							
	(a)			there is acute, marked or moderate ST elevation in the anterolateral leads					
Combinations of	the ab	ove ai	re pos	sible, e.g.					
Inferior and lateral ST elevation									
8. Widespread ST depression									
	(a)			STj < -0.05mV and ST slope is negative in 6 or more leads exluding V1 and aVR.					
and	(b)			there is no RBBB, LBBB or IVCD.					
and	(c)			there is no LVH with repolarisation.					
9. Anteroseptal	ST dep	ressio	n						
	(a)			STj < -0.1mV and STj > T- + 0.05mV in V2-V3, and if this is only true for V3 then there is no LVH with repolarization abnormality.					
and	(b)			there is an ACUTE inferior MI					
and	(c)			there is not RBBB or Brugada pattern					
10. Marked ante	rosept	al ST	depre	ssion					
	(a)		I.	ST < -0.3mV in any of V1 - V4 with corresponding ST slope negative, and RBBB and LBBB are false and there is no RVH with repolarization abnormality. In addition, if only V3 and V4 satisfy these criteria, then there is no LVH with repolarization abnormality.					
		or	II.	In V2 and V3, ST < -0.1mV with corresponding ST slope negative, ST-T- < 0.2mV and there is no acute inferior infarct and RBBB, IVCD, Brugada pattern and (definite) RVH are not present.					
		or	III.	ST junction < -0.2mV in V2 and there is ST elevation in any limb lead (as defined for STEMI) and there is no RBBB nor RVH with repolari- sation					
		or	IV.	ST junction $<$ -0.1mV and ST slope >75 and T+ $>$ 0.75mV and T+ $>$ max (R,R') in V2 and V3					
or	(b)			LBBB is present and concordant ST junction $<$ -0.1mV and ST slope $<$ 10 in V1, V2 or V3					
11. Marked infer	ior ST	depre	ssion						
	(a)	I	I.	ST junction $<$ -0.2mV and ST slope $<$ 20 in 2 contiguous inferior leads and $ S $ $>$ $ ST $					
		and	II.	there is no LBBB					
		and	III.	there is no LVH with repolarisation					
or	(b)			LBBB is present and concordant ST junction $<$ -0.1mV and ST slope $<$ 10 in II, III or aVF					

12. Marked lateral ST depression								
	(a)		I.	ST junction < -0.1mV and ST slope < 0 in lateral leads I, aVL, V5 and V6.				
		and	II.	there is no LBBB				
		and	III.	there is no LVH with repolarisation				
or	(b)			LBBB is present and concordant ST junction $<$ -0.1mV and ST slope $<$ 10 in I, aVL, V5 or V6				
13. End QRS notching/slurring								
	(a)			There is a notch or slur on the R wave at the end of QRS complex in 2 or more contiguous leads in the inferior leads II, aVF III; the lateral leads I, aVL or the anterolateral leads V4, V5, V6. The ST amplitude at the start of the slur or top of the notch $\ge 0.1mV$				
and	(b)			There is no LBBB, RBBB or Brugada pattern				
and	(c)			The QRS duration ≤120msecs				
and	(d)			There is no acute Q wave infarction at the relevant site				
Statements								
	or com	ıbinati	ons) a	bove is true, print one of the following.				
1. , CONSIDER AG	CUTE II	NFARC	Т					
	(a)			age ≥ 18 years				
and	(b)			the STEMI criteria are met				
and	(c)		I.	there is no end QRS notching/slurring at the site of infarction				
		or	II.	there is high STj amplitude at the infarction site				
2. suggests post	2. suggests post-operative pericarditis							
	(a)			clinical classification includes post operative cardiac surgery				
and	(b)			extensive ST elevation				
3. probable post	-opera	ative p	iericar	ditis				
	(a)			there is a clinical classification of post-operative cardiac surgery				
and	(b)			there is ST elevation				
and	(c)			Statement 2 is false				
lf reason 13 is tr	ue, pri	int the	follo	wing.				
4 early repola	rizatio	n patt	ern					
	(a)			Statements 1-3 are false				
and	(b)			there is End QRS notching/slurring as described inreason 13.				
lf any of reasons	1 to 7	(or c	ombin	ations) above is true, print one of the following.				
5. suggests peri	carditi	S						
	(a)			Statements 1-4 are false				
and	(b)		I.	there is marked inferior and anterolateral ST elevation				
		and	II.	there is a high ST elevation score in all anteroseptal leads				
		and	III.	there is no QRS notching				

6. consider pericarditis							
	(a)			Statements 1-5 are false			
and	(b)			there is moderate inferior and anterolateral ST elevation			
and	(c)			there is a high ST elevation score in all anteroseptal leads			
and	(d)			there is no QRS notching			
7. is consistent v	with pe	ericari	ditis				
	(a)			Statements 1-4 are false			
and	(b)			there is a clinical classification of pericarditis			
and	(c)		١.	there is marked ST elevation			
		or	II.	there is moderate ST elevation in anterolateral and inferior leads			
8. cannot rule ou	ut myo	cardia	ıl inju	ry			
	(a)			Statements 1-4 are false			
and	(b)		I.	LVH is present			
		and	II.	there is marked ST elevation in at least 2 of the inferior or lateral leads			
		and	III.	QRS axis $> 0^{\circ}$			
		and	IV.	there is not a clinical classification of myocardial injury or pericar- ditis or post-operative cardiac surgery			
9. is nonspecific							
	(a)			Statements 1-8 are false			
and	(b)			there is marked or moderate ST elevation			

ST depression

The following ST depression statements are only reported if the patient is \geq 18 years. Statements 10, 12, 13 and 14 are only reported if the heart rate is <150 bpm, the QRS duration < 170 ms, there is no pacing reported, and the rhythm is not atrial flutter. Ifany of the following sets of criteria is true, then the appropriate reason (8 to 12) isprinted together with the statement.

10. , CONSIDER ACUTE INFARCT (left main occlusion / multivessel disease)

(a)		I.	there is widespread ST depression as described in Reason
	and	II.	ST elevation in aVR > 0.05 mV
	and	III.	the maximal ST depression is in V4 or V5
	and	IV.	there is no acute inferior, lateral or anterior infarct

11. is probably reciprocal to inferior infarct

	(a)	Statement 10 is FALSE
and	(b)	there is anteroseptal ST depression as described in Reason 9.
and	(c)	there is an acute inferior infarct

8

12. accompanies	s the ii	nfarct		
	(a)			Statement 10 is FALSE
and	(b)		Ι.	there is marked anteroseptal ST depression
				as described in Reason 10 (a).
		or	II.	there is marked inferior ST depression
				as described in Reason 11 (a).
		or	III.	there is marked lateral ST depression
				as described in Reason 12 (a).
and	(c)			there is an acute infarct in another wall (e.g. in ST elevation in one area and ST depression in another)
13. , CONSIDER A	CUTE	INFAR	СТ	
	(a)			Statements 10,11 and 12 are FALSE
and	(b)		I.	there is marked anteroseptal depression
				as described in Reason 10(a)I ,II or III, or 10(b).
		or	II.	there is marked inferior ST depression as described in Reason 11.
		or	III.	there is marked lateral ST depression as described in Reason 12.
14. , CONSIDER A	CUTE	INFAR	CT (pr	oximal LAD occlusion)
	(a)			Statements 10 and 11 are FALSE
and	(b)		I.	there is marked anteroseptal ST depression
				as described in Reason 10(a)(IV).
		and	II.	ST is positive in aVR
		and	III.	overall QRS duration < 120ms
		and	IV.	there is no acute inferior infarct

15 ST-T abnormalities (ischaemia etc.)

Criteria

The criteria for ST-T abnormalities are essentially classical in nature relating to ST depression or T wave inversion. In practice, however, their logical relationship to diagnostic statements is somewhat involved. For this reason, a simplified version is set out below.

Define an ST-T abnormality in the lead combinations as follows:

Inferior leads		
	(a)	there is ST depression or T wave inversion in inferior leads
and	(b)	there is not inferior myocardial infarction
and	(c)	none of WPW or LBBB is true
Lateral leads		
	(a)	there is ST depression or T wave inversion in lateral leads
and	(b)	there is not lateral infarction
and	(c)	none of WPW or LBBB is true
Anteroseptal lea	ds	
	(a)	there is ST depression or T wave inversion in anteroseptal leads
and	(b)	there is not (anterior) septal or anterior infarction
and	(c)	none of WPW, RBBB, RBBB with left anterior fascicular block, RBBB with left posterior fascicular block, Extensive IVCD or Brugada pat- tern is true
Anterior leads		
	(a)	there is no ST-T abnormality in the anteroseptal leads
and	(b)	there is ST depression or T wave inversion in the anterior leads
and	(c)	none of WPW, RBBB, RBBB with left anterior fascicular block, RBBB with left posterior fascicular block, Extensive IVCD, LBBB or Brugada pattern is true
Septal leads		
	(a)	there is no ST-T abnormality in the anteroseptal or anterior leads
and	(b)	there is ST depression or T wave inversion in the septal leads
and	(c)	there is not anteroseptal or anterior or septal infarction
and	(d)	none of WPW, RBBB, RBBB with left anterior fascicular block, RBBB with left posterior fascicular block, Extensive IVCD or Brugada pat- tern is true
Anterolateral lea	ıds	
	(a)	there is an ST and/or T wave abnormality in both anterior and lateral leads as defined above
Widespread		
	(a)	there is an ST and/or T wave abnormality in the inferior leads and either the anterolateral or lateral leads together with septal, an- teroseptal or anterior leads

Statements (reasons)

There are several possible 'reason' statements that can be produced, namely:

* ST abnormality

ST junctional depression

Widespread ST abnormality

* T wave abnormality

Widespread T wave abnormality

* ST-T abnormality

Widespread ST-T abnormality

The location of the abnormality, denoted *, can be chosen from the following:

- Inferior
- Lateral
- Anteroseptal
- Anterior
- Septal
- Anterolateral

Various combinations can be selected, e.g. Inferior/lateral

The 'reason' statements are essentially integral to the main diagnostic statement which would be meaningless if not preceded by a reason.

Statements

If any of the above 'reason' statements is true, it is printed together with one of the following statements, which are presented here in almost a hierarchical form, i.e. a statement towards the end of the list would only be printed if those near the top were not relevant. In the interest of brevity there are marked simplifications in presenting the list.

An example of the output in this section is as follows:

Lateral ST-T abnormality may be due to the hypertrophy and/or ischemia

In the paediatric age range, statements involving "Myocardial Ischaemia" are suppressed and are replaced by an appropriate statement, e.g. "Non-Specific".

1. is nonspecific

	(a)	there is an T wave abnormality in any lead group
and	(b)	there is demand pacemaker activity

2. may be due to the hypertrophy and/or ischemia

	(a)			LVH or RVH or BVH
and	(b)			ST-T abnormality
and	(c)		I.	male ≥ 30 years
		or	II.	female \geq 40 years
and	(d)			patient is not on digitalis

3. may be	due to	o the l	hypert	rophy	and/or ischemia/digitalis effect
		(a)			criteria 2(a-c) are true
	and	(b)			patient is on digitalis
4. is proba	ıbly du	ie to f	the ve	ntricul	ar hypertrophy
		(a)			LVH or RVH or BVH
	and	(b)			ST-T abnormality
	and	(c)		I.	
		()	or	١١.	female < 40 years
	and	(d)			patient is not on digitalis
5. is proba	ıblv du	ie to 1	the ve	ntricul	ar hypertrophy/digitalis effect
	,	(a)			criteria 4(a-c) are true
	and	(u) (b)			patient is on digitalis
	unu	(2)			
6. may be	due to		cardia	l ische	
		(a)			there is ST-T abnormality in the lateral leads
	and	(b)		I.	there is evidence of anterior or anteroseptal infarction with T wave inversion in the relevant leads
			or	II.	there is inferior infarction with inferior T wave abnormality
7. suggest	s myo	cardia	al infa	rct	
	A.	(a)			there is marked ST depression
	and	(b)			patient is not on digitalis
	and	(c)			there is not atrial flutter or atrial fibrillation.
	and	(d)			there is a clinical classification of myocardial infarction
or	B.	(a)			T- < -0.5mV in V2 or V3 or V4
-	or	(b)			T- < -0.35mV in aVF
8. is consi	stent v	with r	ulmor	narv er	nbolism
		(a)		, .	clinical classification is pulmonary embolism
	and	(b)			patient is not on digitalis
	and	(c)		I.	7(a), (c) are true and there is ST-T abnormality
	unu	(0)			in the (antero) septal leads
			or	II.	there is moderate ST-T abnormality in certain combinations of leads
			-		
9. suggest	s myo		al inju	ry/iscl	
		(a)			7(a)(b)(c) are true
	and	(b)			clinical classification is not myocardial infarction, pulmonary em- bolism or post operative cardiac surgery in the presence of certain groups of ST-T abnormalities
10. is prob	ably d	lue to	cardi	ac sur	gery
		(a)			clinical classification is post operative cardiac surgery
	and	(b)		Ι.	there is widespread T wave inversion
	-	x - /	or	11.	there is T wave abnormality in at least two groups of leads

11. may be due	to myocardial infa	rct or CVA	
	(a)	there is T wave inversion in the lateral or anteroseptal leads	
and	(b)	T- < -1.0mV in V3, V4 or V5	
12. is consistent	with endocrine di	sease	
	(a)	T wave abnormality (but not in anteroseptal leads only)	
and	(b)	clinical classification is endocrine disease	
and	(c)	the heart rate < 60 bpm	
and	(d)	the patient is not on digitalis	
13. is possibly s	econdary to hyper	tension	
	(a)	moderate T wave abnormality in the inferior and/or lateral leads	
and	(b)	clinical classification is hypertension	
and	(c)	patient is not on digitalis	
14. is possibly s	econdary to hyper	tension/digitalis effect	
	(a)	13(a) and 13(b) are true	
and	(b)	patient is on digitalis	
15. may be seco	ndary to hyperten	sion/ischemia	
	(a)	moderate T wave abnormality including inferior and lateral leads in addition to T wave abnormality in other leads	
and	(b)	clinical classification is hypertension	
and	(c)	patient is not on digitalis	
16. may be due	to digitalis/hypert	ension	
	(a)	15(a) and (b) are true	
and	(b)	patient is on digitalis	
17. is possibly s	econdary to conge	enital heart disease	
	(a)	there is ST and/or T wave abnormality	
and	(b)	clinical classification is congenital heart disease	
and	(c)	patient is not on digitalis	
18. is possibly s	econdary to valvul	lar heart disease	
	(a)	there is ST and/or T wave abnormality	
and	(b)	clinical classification is rheumatic heart disease	
and	(c)	patient is not on digitalis	
19. is possibly s	econdary to valvul	lar heart disease/digitalis	
	(a)	18(a) and (b) are true	
and	(b)	patient is on digitalis	

i

20. is possibly secondary to respiratory disease

	(a)	there is ST or T wave abnormality in the inferior leads with or without another ST-T abnormality $\label{eq:stars}$
and	(b)	clinical classification is respiratory disease
and	(c)	P+ amplitude in aVF > 0.3mV
and	(d)	QRS axis > 60° if ST-T abnormality other than inferior are present
and	(e)	patient is not on digitalis
21. is age relate	d : consider juveni	le T waves
	(a)	T wave abnormality in (anterior) septal leads
and	(b)	age < 18 years
22. is non-specil	ic : may be norma	l for age and race
	(a)	21(a) is true
and	(b)	black with age < 40 years

corpuls3 does not support race as an input.

23. may be age and gender related: consider normal variant

20. may 50 ago (una ge			
	(a)			T wave abnormality in the inferior leads with or without changes in the lateral leads
and	(b)		I.	the patient is female with age < 35 years
		or	II.	the patient is male with age < 30 years
and	(c)			patient is not on digitalis
and	(d)			no previous statement is true and clinical classification is not myo- cardial infarction or ischaemia
24. is consistent	with	digita	lis eff	ect
	(a)			female with age < 35 years or male with age < 30 years
and	(b)			no previous statement is true and clinical classification is not myo- cardial infarction or ischaemia
and	(c)			patient is on digitalis
and	(d)			clinical classification is not pulmonary embolism or post-operative with certain groups of ST-T abnormalities
25. suggests my	ocardi	ial isc	hemia	
	(a)			marked T wave abnormality in any group or groupsof leads
and	(b)			clinical classification is myocardial infarction or myocardial isch- aemia
and	(c)			patient is not on digitalis
26. suggests isc	hemia	/digit	alis ef	fect
	(a)			25(a) and (b) are true
and	(b)			patient is on digitalis

27. may be due to myocardial ischemia						
	(a)	ST-T abnormality in any group of leads				
and	(b)	no previous statement true				
and	(c)	patient is not on digitalis				
and	(d)	clinical classification is not myocardial infarction or ischaemia				
and	(e)	age $>$ 30 years if male or age $>$ 40 years if female				
28. suggests pos	sible myocardial i	ischemia/digitalis effect				
	(a)	27(a)(b)(d)(e) are true				
and	(b)	patient is on digitalis				
29. is age and ge	ender related					
	(a)	27(a) to (d) are true				
and	(b)	age \leqslant 30 years if male or age \leqslant 40 years if female				
30. is age and ge	ender related – po	ssible digitalis effect				
	(a)	29(a) and (b) are true				
and	(b)	patient is on digitalis				
31. is consistent	31. is consistent with myocardial ischemia					
	(a)	moderate ST and/or T wave abnormality				
		in any group or group of leads				
and	(b)	clinical classification of myocardial infarction				
		or myocardial ischaemia				
and	(c)	patient is not on digitalis				
32. is consistent	with ischemia/dig	jitalis effect				
	(a)	31(a) and (b) is true				
and	(b)	patient is on digitalis				
33 possible dig	gitalis effect					
	(a)	31(a) is true				
and	(b)	31(b) is false and clinical classification is not normal				
and	(c)	patient is on digitalis				
and	(d)	age $>$ 30 years if male or age $>$ 40 years if female				
34. is borderline						
	(a)	31(a) is true				
and	(b)	clinical classification is normal				
and	(c)	patient is not on digitalis				
and	(d)	age $>$ 30 years if male or age $>$ 40 years if female				

27. may be due to myocardial ischemia

35. is bord	35. is borderline for age and gender				
		(a)	31(a) is true		
	and	(b)	clinical classification is not normal or unknown		
	and	(c)	patient is not on digitalis		
	and	(d)	age \leqslant 30 years if male or age \leqslant 40 years if female		
36. is bord	erline	for age and gend	er – possible digitalis effect		
		(a)	35(a)(b)(d) are true		
	and	(b)	patient is on digitalis		
37. is cons	sistent	with digitalis effe	ect		
		(a)	none of the previous statement is true		
	and	(b)	there is widespread borderline ST and/or T wave abnormality		
	and	(c)	patient is on digitalis		
38. is prob	ably d	ue to digitalis eff	ect		
		(a)	there is borderline ST and/or T wave abnormality in any group of leads		
	and	(b)	patient is on digitalis		
39. sugges	39. suggests digitalis effect/ischemia				
		(a)	none of the previous statements is true		
	and	(b)	patient is on digitalis		
	and	(c)	age \ge 35 years if female or age \ge 30 years if male		
40. is nons	specifi	C			
	A.	(a)	31(a) is true		
	and	(b)	31(b) is false and clinical classification is not normal		
	and	(c)	patient is not on digitalis		
	and	(d)	age $>$ 30 years if male or age $>$ 40 years if female		
or	B.	(a)	none of the previous statement is true		
	and	(b)	there is widespread borderline ST and/or T wave abnormality		
41. is nons	specifi	C			
		(a)	there is no T wave abnormality or ST segment depression but there is junctional ST depression		
	and	(b)	there is no myocardial infarction, conduction defect or WPW pattern result		
	and	(c)	there is not LVH with ST/T reasons,		
	and	(d)	the ST slope $>$ 0° with the ST amplitude \leqslant -0.02mV for any TWO leads (excluding aVR)		

16	Misce	llane	0U:	S				
16.1	Lo	w QR	S vo	oltag	es			
Staten	nents							
1. Low	v QRS volta	iges in l	limb	leads				
		(a)			peak to peak QRS voltage < 0.5mV for all of Leads I, II and III			
2. Low	v QRS volta	iges in j	preco	ordial	leads			
		(a)		I.	female			
		i	and	II.	peak to peak QRS voltage < 0.8mV			
		(1.)			for all of leads V1, V2, V3, V4, V5 and V6			
	or	(b)	and	I. II.	male peak to peak QRS voltage < 1.0mV			
			unu		for all of leads V1, V2, V3, V4, V5 and V6			
2 Con	3. Generalized low QRS voltages							
J. UUI	eralizeu lu	(a)	VULLA	iyes	both statements 1 and 2 are true			
4. Generalized low QRS voltages – consider pericardial effusion								
4. UEN	eralized lo	(a)	volla	iges -	peak to peak voltage < 75%			
		(u)			of thresholds specified instatements 1 and 2			
					·			
16.2	Ta	ll T w	ave	S				
Staten	nents							
1. Tall	T waves -	- consid	er a	cute i	schemia or hyperkalemia			
		(a)			age >= 30 years			
	and	(b)			T+ amplitude > an age and sex dependent limit			
					in all leads V3 to V5, as detailed in the table below			
	and	(c)			Left Bundle Branch Block is not present			
2. Tall	T waves -	consid	er hy	yperka	alemia			
		(a)			age < 30 years			
	and	(b)			T+ amplitude > an age and sex dependent limit			
	and	(c)			in allleads V3 to V5, as detailed in the table below Left Bundle Branch Block is not present			

Table of age and sex dependent limits:

	Age < 30 years	Age ≥ 30 years
Female	0.9 mV	0.75 mV
Male	1.6 mV	1.2 mV

16.3 Critical values

There are seven critical value statements that can be generated by the analysis. Each critical value statement will be output based upon the presence of specific statements that appear on the report or if the heart rate exceeds an age related threshold. The available critical value statements are as follows:-

1. *** ACUTE STEMI ***

This statement will be output if the relevant ST amplitudes exceed the higher level of ST amplitudes (as described in the section headed MYOCARDIAL INFARCTION), and any of the following statements appear on the report:-

++ ST elevation, CONSIDER ACUTE INFARCT

POSSIBLE ACUTE ++ INFARCT

*** ++ INFARCT - POSSIBLY ACUTE ***

where ++ = inferior, lateral, anteroseptal etc.

2. *** POSSIBLE ACUTE STEMI ***

This statement will be output if the relevant ST amplitudes exceed the upper limits for normal ST amplitudes (as described in the section headed MYOCARDIAL INFARCTION), but not the higher limits of ST amplitudes, and any of the following statements appear on the report:-

++ ST elevation, CONSIDER ACUTE INFARCT

POSSIBLE ACUTE ++ INFARCT

*** ++ INFARCT - POSSIBLY ACUTE ***

where ++ = inferior, lateral, anteroseptal etc.

3. *** ACUTE MI/ISCHEMIA ***

This statement will be output if any of the following statements appear on the report:-

Marked ++ ST depression, CONSIDER ACUTE INFARCT

Marked anteroseptal ST depression, CONSIDER ACUTE INFARCT (proximal LAD occlusion)

Widespread ST depression, CONSIDER ACUTE INFARCT (left main occlusion /multivessel disease)

where ++ = inferior, lateral, anteroseptal

4. *** EXTREME TACHYCARDIA ***

This statement will be output if the heart rate exceeds the limit for age shown in the table below:-

Age range	Rates in beats/min
Birth - 28 days	$213 \rightarrow 230$
29 days - 180 days	230
181 days - 17 years	230 → 150
≥ 18 years	150

5. *** EXTREME BRADYCARDIA ***

This statement will be output if the heart rate is below the limit for age shown in the table below:

Age range	Rates in beats/min
Birth - 28 days	$73 \rightarrow 90$
29 days - 365 days	90
1 year - 6 years	90 → 45
6 years - 12.5 years	$45 \rightarrow 40$
> 12.5 years	40

6. *** SIGNIFICANT ARRHYTHMIA ***

This statement will be output if any of the following statements appear on the report:-

Supraventricular tachycardia

Probable supraventricular tachycardia

Probable ventricular tachycardia

Consider ventricular flutter/fibrillation

Accelerated idioventricular rhythm

Possible idioventricular rhythm

Wide QRS tachycardia - possible supraventricular tachycardia

Wide QRS tachycardia - possible ventricular tachycardia

A-V dissociation

with paroxysmal idioventricular rhythm

with multifocal interpolated PVCs

with frequent multifocal PVCs

with non-sustained ventricular tachycardia

with 2nd degree A-V block, Mobitz I (Wenckebach)

with 2nd degree A-V block, Mobitz II

with complete A-V block

7. *** PROLONGED QTc INTERVAL ***

	(a)	QTc > 520ms
and	(b)	overall QRS duration < 120ms
and	(c)	heart rate ≤ 125bpm

17 Rhythm statements

The rhythm section of the program will always select one statement (only) from the list of dominant rhythms and if appropriate will select up to three additional statements from the list of supplementary statements.

Dominant rhythm statements

Sinus rhythm Sinus tachycardia Sinus bradycardia Sinus arrhythmia Sinus tachycardia with sinus arrhythmia Sinus bradycardia with sinus arrhythmia Atrial tachycardia Atrial flutter Atrial fibrillation Junctional rhythm Accelerated junctional rhythm Junctional bradycardia Atrial pacing Ventricular pacing A-V sequential pacemaker Pacemaker rhythm Possible ectopic atrial rhythm Possible ectopic atrial tachycardia Possible ectopic atrial bradycardia Irregular ectopic atrial rhythm Irregular ectopic atrial tachycardia Irregular ectopic atrial bradycardia Probable atrial tachycardia Probable sinus tachycardia Probable supraventricular tachycardia Marked sinus bradycardia Probable atrial flutter Probable atrial fibrillation Probable junctional rhythm Probable accelerated junctional rhythm Probable ventricular tachycardia Consider ventricular flutter/fibrillation Wide QRS tachycardia - possible supraventricular tachycardia Wide QRS tachycardia - possible ventricular tachycardia Accelerated idioventricular rhythm Possible idioventricular rhythm Possible atrial flutter

Possible junctional rhythm Possible accelerated junctional rhythm Possible junctional bradycardia A-V dissociation Undetermined rhythm Regular supraventricular rhythm Irregular supraventricular rhythm Supplementary rhythm statements with frequent PVCs with multifocal PVCs with frequent multifocal PVCs with interpolated PVC(s) with multifocal interpolated PVCs with PVC(s) with PAC(s) with frequent PACs with aberrantly conducted supraventricular complexes with 1st degree A-V block with borderline 1st degree A-V block with 2nd degree A-V block, Mobitz I (Wenckebach) with 2nd degree A-V block, Mobitz II with 2:1 A-V block with 3:1 A-V block with 4:1 A-V block with high degree A-V block with varying 2nd degree A-V block with complete A-V block with 2nd degree (Mobitz II) SA Block with bigeminal PACs with bigeminal PVCs Demand atrial pacing Demand pacing with fusion complexes with non-sustained ventricular tachycardia with intermittent conduction defect with paroxysmal idioventricular rhythm with unclassified aberrant complexes with undetermined ectopic complexes with undetermined irregularity

The following four statements are added to other rhythm statements where appropriate.

or aberrant ventricular conduction

with rapid ventricular response

with uncontrolled ventricular response

with slow ventricular response

18 Summary codes

There are six summary codes available. Each diagnostic statement and dominant or supplementary rhythm statement is assigned a summary code and the highest code present in an interpretation is then printed. The various codes in ascending order are as follows:

- 1. Normal ECG
- 2. Normal ECG except for rate
- 3. Normal ECG based on available leads
- 4. Borderline ECG
- 5. Abnormal ECG
- 6. Technical error

19 Measurement matrix

The electrocardiographs can be programmed so that the Measurement Matrix is written out after the analysis report.

The Measurement Matrix consists of 15 columns which contain measurements for the twelve standard leads and optionally 3 additional leads as specified by the user when using a 15-lead analysis. The 12 columns are labelled I, II, III, aVR, aVL, aVF, V1, V2,V3 (or V4R for paediatric lead placement), V4, V5, V6.

The content of the	matrix is	explained	helow:
	matrix 15	explained	D01011.

Row	Content	Description	Units
1	P onset	Time from the beginning of the representative beat to the be- ginning of the P wave.	msec
2	P duration	P wave duration	msec
3	QRS onset	Time from the beginning of the representative beat to the be- ginning of the QRS complex.	msec
4	QRS duration	QRS complex duration	msec
6	Q duration	Q wave duration	msec
7	R duration	R wave duration	msec
8	S duration	S wave duration	msec
9	R' duration	R' wave duration	msec
10	S' duration	S' wave duration	msec
14	T onset	Time from the beginning of the representative beat to the be- ginning of the T wave	msec
16	P+ duration	P+ wave duration	msec
18	QRS intrinsicoid deflection	QRS Intrinsicoid deflection time	msec
19	P+ amplitude	P+ wave amplitude	μV
20	P- amplitude	P- wave	μV
21	Peak to peak QRS	Peak to peak amplitude of the QRS complex.	μV
23	Q amplitude	Q wave	μV
24	R amplitude	R wave amplitude	μV
25	S amplitude	S wave amplitude	μV
26	R' amplitude	R' wave amplitude	μV
27	S' amplitude	S' wave amplitude	μV
30	ST amplitude	ST wave amplitude	μV
31	2/8 ST-T amp	Amplitude at a point which is 2/8 of the ST-Tinterval.	μV
32	3/8 ST-T amp	Amplitude at a point which is 3/8 of the ST-Tinterval.	μV
33	T+ amplitude	T+ wave amplitude	μV
34	T- amplitude	T- wave amplitude	μV
35	QRS area	Total area of the QRS complex scaled down by a factor of 20	μV
39	T morphology	T wave morphology	µV- msec
			/20
40	R wave notch	R wave notch count	
41	Delta Waveconfi- dence	Probability of the presence of a delta wave.	%

Row	Content	Description	Units
42	ST slope	ST slope from the J point to the 3/8 ST-T point	degrees
47	QT interval	Duration of QT interval	msec
51	QRS notch/slur	Amplitude at start of end QRS notch or slur	μV
52	PR amplitude	Difference in amplitude from that at P onset to amplitude at QRS onset	μV
53	ST adjustedampli- tude	ST amplitude adjusted (to take PR amplitude into account, if applicable)	μV

20 List of statements

The complete list of statements produced by the Glasgow Program is listed below.

Preliminary comments

Possible faulty V2 - omitted from analysis Possible faulty V3 - omitted from analysis Possible faulty V4 - omitted from analysis Possible faulty V5 - omitted from analysis Possible faulty V6 - omitted from analysis Possible sequence error: V1,V2 omitted Possible sequence error: V2,V3 omitted Possible sequence error: V4,V5 omitted Possible sequence error: V5,V6 omitted Lead(s) unsuitable for analysis:

- ~ |
- ~ ||
- ~ |||
- ~ aVR
- ~ aVL
- ~ aVF
- ~ V1
- ~ V2
- ~ V3
- ~ V4
- ~ V5
- ~ V6
- ~ V4R
- --- Possible measurement error ---

Lead reversal/dextrocardia

- --- Possible arm lead reversal only aVF, V1-V6 analyzed ---
- --- Suggests dextrocardia ---
- --- Possible limb lead reversal hence only V1-V6 analyzed ---
- --- Possible arm/leg lead interchange hence only V1-V6 analyzed ---

Restricted analysis

Pacemaker rhythm - no further analysis

- --- No further analysis due to lack of dominant QRS ---
- --- Similar QRS in V leads ---
- --- Technically unsatisfactory tracing ---

Miscellaneous preliminary statements

- If rhythm is confirmed, the following report may not be valid
- --- Invalid clinical data entry ---
- --- Invalid medication entry ---
- --- Interpretation made without knowing patient's gender ---
- --- Interpretation made without knowing patient's age ---
- --- Interpretation made without knowing patient's gender/age ---

Pediatric ECG analysis

--- Interpretation based on pediatric criteria ---

Intervals

Short PR interval Borderline prolonged QT interval Prolonged QT - consider ischemia, electrolyte imbalance, drug effects Short QT interval

Atrial abnormalties

Possible right atrial abnormality Consider left atrial abnormality Possible right atrial abnormality consistent with pulmonary disease Possible left atrial abnormality Possible biatrial enlargement

Critical values

- *** ACUTE STEMI ***
- *** POSSIBLE ACUTE STEMI ***
- *** ACUTE MI/ISCHEMIA ***
- *** EXTREME TACHYCARDIA ***
- *** EXTREME BRADYCARDIA ***
- *** SIGNIFICANT ARRHYTHMIA ***
- *** PROLONGED QTc INTERVAL ***

QRS axis deviation

Indeterminate axis Leftward axis Left axis deviation Marked left axis deviation QRS axis leftward for age Rightward axis Right axis deviation Marked right axis deviation Left anterior fascicular block Possible left anterior fascicular block Possible left posterior fascicular block Severe right axis deviation

Conduction defects

Left bundle branch block Incomplete LBBB Right bundle branch block RBBB with left anterior fascicular block RBBB with RAD - possible left posterior fascicular block IV conduction defect Incomplete RBBB rSr'(V1) - probable normal variant

WPW pattern

WPW pattern - probable left posterolateral accessory pathway WPW pattern - probable left posteroseptal accessory pathway WPW pattern - probable left anterolateral accessory pathway WPW pattern - probable right posteroseptal accessory pathway WPW pattern - probable midseptal accessory pathway WPW pattern - probable anteroseptal accessory pathway WPW pattern - probable right anterolateral accessory pathway WPW pattern - probable right anterolateral accessory pathway WPW pattern - probable right posterolateral accessory pathway

Brugada pattern

Marked ST elevation - consider Brugada pattern

Hypertrophy

Left ventricular hypertrophy Left ventricular hypertrophy, possible digitalis effect Borderline high QRS voltage - probable normal variant Possible left ventricular hypertrophy Possible left ventricular hypertrophy, possible digitalis effect Left ventricular hypertrophy by voltage only Right ventricular hypertrophy Right ventricular hypertrophy, possible digitalis effect Possible right ventricular hypertrophy Possible right ventricular hypertrophy Possible right ventricular hypertrophy, possible digitalis effect Biventricular hypertrophy Possible biventricular hypertrophy

Myocardial infarction

Inferior infarct - age undetermined *** INFERIOR INFARCT - POSSIBLY ACUTE *** Possible inferior infarct - age undetermined Small inferior Q waves noted: infarct cannot be excluded Small inferior Q waves noted: probably normal ECG Abnormal Q waves of undetermined cause Inferior Q waves may be due to cardiomyopathy Lateral infarct - age undetermined *** LATERAL INFARCT - POSSIBLY ACUTE *** Possible lateral infarct - age undetermined Small lateral Q waves noted: probably normal ECG Lateral Q waves may be due to cardiomyopathy Anteroseptal infarct - age undetermined *** ANTEROSEPTAL INFARCT - POSSIBLY ACUTE *** Possible anteroseptal infarct - age undetermined Anteroseptal QRS changes may be due to ventricular hypertrophy Anteroseptal QRS changes may be due to corrected transposition Cannot rule out anteroseptal infarct - age undetermined QRS changes may be due to LVH but cannot rule out anteroseptal infarct Poor R wave progression - cannot rule out anteroseptal infarct Poor R wave progression consistent with pulmonary disease Poor R wave progression Anterior infarct - age undetermined *** ANTERIOR INFARCT - POSSIBLY ACUTE *** Possible anterior infarct - age undetermined Anterior QRS changes may be due to ventricular hypertrophy Anterior QRS changes may be due to corrected transposition Cannot rule out anterior infarct - age undetermined QRS changes V3/V4 may be due to LVH but cannot rule out anterior infarct Anterior QRS changes are probably related to pulmonary disease *** SEPTAL INFARCT - POSSIBLY ACUTE *** Possible septal infarct - age undetermined Septal QRS changes may be due to ventricular hypertrophy Septal QRS changes may be due to corrected transposition Cannot rule out septal infarct - age undetermined QRS changes in V2 may be due to LVH but cannot rule out septal infarct Q in V1/V2 may be normal variant but septal infarct cannot be excluded Q in V1/V2 may be due to lead placement error though septal infarct cannot be excluded Q in V1/V2 may be due to LVH though septal infarct cannot be excluded Poor R wave progression may be due to pulmonary disease Poor R wave progression - cannot rule out septal infarct

Possible posterior infarct - age undetermined Possible posterior extension of infarct Tall R V1/V2 probably reflect the infarct Anterolateral infarct - age undetermined *** ANTEROLATERAL INFARCT - POSSIBLY ACUTE *** Possible anterolateral infarct - age undetermined Extensive infarct - age undetermined *** EXTENSIVE INFARCT - POSSIBLY ACUTE *** Possible extensive infarct - age undetermined Q waves may be due to cardiomyopathy

ST abnormalities Marked anteroseptal ST depression Marked inferior ST depression Marked lateral ST depression Anteroseptal ST depression Widespread ST depression Widespread ST elevation Anterolateral ST elevation Inferior and lateral ST elevation Inferior and ant/septal ST elevation Inferior and septal ST elevation Inferior and anterior ST elevation Anteroseptal ST elevation Anterior ST elevation Septal ST elevation Lateral ST elevation Inferior ST elevation End QRS notching/slurring ~ is probably reciprocal to inferior infarct ~, CONSIDER ACUTE INFARCT ~, CONSIDER ACUTE INFARCT (proximal LAD occlusion) accompanies the infarct ~, CONSIDER ACUTE INFARCT (left main occlusion / multivessel disease) ~ is consistent with pericarditis ~ - cannot rule out myocardial injury ~ - consider pericarditis ~ suggests pericarditis ~ suggests post operative pericarditis ~ - early repolarization pattern ~ - probable post operative pericarditis

~ is nonspecific

ST-T changes (ischemia)

ST junctional depression Widespread T wave abnormality Widespread ST abnormality Widespread ST-T abnormality Anterolateral T wave abnormality Anterolateral ST abnormality Anterolateral ST-T abnormality Ant/septal and lateral T wave abnormality Ant/septal and lateral ST abnormality Ant/septal and lateral ST-T abnormality Septal and lateral T wave abnormality Septal and lateral ST abnormality Septal and lateral ST-T abnormality Septal T wave abnormality Septal ST abnormality Septal ST-T abnormality Lateral T wave abnormality Lateral ST abnormality Lateral ST-T abnormality Inferior and ant/septal T wave abnormality Inferior and ant/septal ST abnormality Inferior and ant/septal ST-T abnormality Inferior and anterior T wave abnormality Inferior and anterior ST abnormality Inferior and anterior ST-T abnormality Inferior and septal T wave abnormality Inferior and septal ST abnormality Inferior and septal ST-T abnormality Inferior T wave abnormality Inferior ST abnormality Inferior ST-T abnormality Anteroseptal T wave abnormality Anteroseptal ST abnormality Anteroseptal ST-T abnormality Anterior T wave abnormality Anterior ST abnormality Anterior ST-T abnormality Inferior/lateral T abnormality Inferior/lateral ST abnormality Inferior/lateral ST-T abnormality

- \sim is probably due to cardiac surgery
- ~ is consistent with digitalis effect
- ~ is consistent with pulmonary embolism
- ~ is nonspecific
- ~ is consistent with endocrine disease
- ~ is possibly secondary to hypertension
- ~ is possibly secondary to congenital heart disease
- ~ is possibly secondary to valvular heart disease
- ~ is possibly secondary to respiratory disease
- ~ is possibly secondary to hypertension/digitalis effect
- ~ is possibly secondary to valvular heart disease/digitalis
- ~ is consistent with digitalis effect
- ~ is probably due to digitalis effect
- ~ is borderline
- ~ is age related : consider juvenile T waves
- ~ is non-specific : may be normal for age and race

i) corpuisa

corpuls3 does not support race as an input.

- ~ may be age and gender related : consider normal variant
- ~ is age and gender related
- ~ is age and gender related possible digitalis effect
- ~ is borderline for age and gender
- ~ is borderline for age and gender possible digitalis effect
- ~ suggests myocardial ischemia
- ~ suggests ischemia/digitalis effect
- ~ suggests myocardial infarct
- ~ may be due to myocardial infarct or CVA
- ~ suggests myocardial infarct
- ~ suggests myocardial injury/ischemia
- ~ may be due to myocardial ischemia
- ~ suggests possible myocardial ischemia/digitalis effect
- ~ possible digitalis effect
- ~ is consistent with myocardial ischemia
- ~ is consistent with ischemia/digitalis effect
- ~ suggests digitalis effect/ischemia
- ~ may be due to myocardial ischemia
- ~ may be secondary to hypertension/ischemia
- ~ may be due to digitalis/hypertension
- ~ may be due to the hypertrophy and/or ischemia
- ~ may be due to the hypertrophy and/or ischemia/digitalis effect
- ~ is probably due to the ventricular hypertrophy
- ~ is probably due to the ventricular hypertrophy/digitalis effect

Miscellaneous - low QRS voltages

Low QRS voltages in limb leads Low QRS voltages in precordial leads Generalized low QRS voltages Generalized low QRS voltages – consider pericardial effusion

Miscellaneous - tall T waves

Tall T waves - consider acute ischemia or hyperkalemia Tall T waves - consider hyperkalemia

Dominant rhythm statements

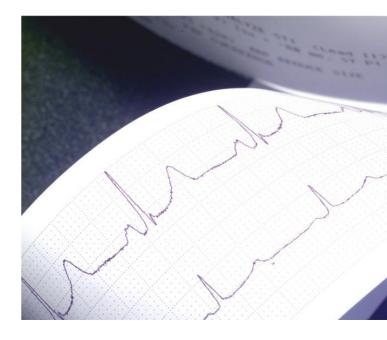
Sinus rhythm Sinus tachycardia Sinus bradycardia Sinus arrhythmia Sinus tachycardia with sinus arrhythmia Sinus bradycardia with sinus arrhythmia Atrial tachycardia Atrial flutter Atrial fibrillation Junctional rhythm Accelerated junctional rhythm Junctional bradycardia Atrial pacing Ventricular pacing A-V sequential pacemaker Pacemaker rhythm Possible ectopic atrial rhythm Possible ectopic atrial tachycardia Possible ectopic atrial bradycardia Irregular ectopic atrial rhythm Irregular ectopic atrial tachycardia Irregular ectopic atrial bradycardia Probable atrial tachycardia Probable sinus tachycardia Probable supraventricular tachycardia Marked sinus bradycardia Probable atrial tachycardia Probable atrial flutter Probable atrial fibrillation Probable junctional rhythm

Probable accelerated junctional rhythm

- Probable supraventricular tachycardia
- Probable ventricular tachycardia
- Consider ventricular flutter/fibrillation
- Accelerated idioventricular rhythm
- Possible idioventricular rhythm
- Possible atrial flutter
- Possible junctional rhythm
- Possible accelerated junctional rhythm
- Possible junctional bradycardia
- Wide QRS tachycardia possible supraventricular tachycardia
- Wide QRS tachycardia possible ventricular tachycardia
- A-V dissociation
- Regular supraventricular rhythm
- Irregular supraventricular rhythm
- Undetermined rhythm

Supplementary rhythm statements

- ~ with PVC(s)
- ~ with frequent PVCs
- ~ with multifocal PVCs
- ~ with frequent multifocal PVCs
- ~ with interpolated PVC(s)
- \sim with multifocal interpolated PVCs
- ~ with paroxysmal idioventricular rhythm
- ~ with multifocal PVCs
- ~ with multifocal interpolated PVCs
- ~ with frequent multifocal PVCs
- ~ with non-sustained ventricular tachycardia
- ~ with intermittent conduction defect
- ~ with rapid ventricular response
- ~ with uncontrolled ventricular response
- ~ with slow ventricular response
- ~ with PACs
- ~ with frequent PACs
- ~ with 1st degree A-V block
- ~ with borderline 1st degree A-V block
- ~ with 2nd degree A-V block, Mobitz I (Wenckebach)
- ~ with 2nd degree A-V block, Mobitz II
- ~ with 2:1 A-V block
- ~ with 3:1 A-V block
- ~ with 4:1 A-V block


- ~ with high degree A-V block
- \sim with varying 2nd degree A-V block
- ~ with complete A-V block
- \sim with 2nd degree (Mobitz II) SA block
- ~ with bigeminal PACs
- \sim with bigeminal PVCs
- ~ with fusion complexes
- ~ or aberrant ventricular conduction
- Demand atrial pacing

Demand pacing

- ~ with aberrantly conducted supraventricular complexes
- ~ with unclassified aberrant complexes
- ~ with undetermined ectopic complexes
- ~ with undetermined irregularity

Summary statements

Normal ECG Normal ECG except for rate Normal ECG based on available leads Borderline ECG Abnormal ECG Technical error

GS Elektromedizinische Geräte GmbH Hauswiesenstraße 26 | 86916 Kaufering

Telefon	+ 49 8191 65722-0	
Fax	+ 49 8191 65722-22	
E-mail	info@corpuls.com	
Web	www.corpuls.world	

P/N 04145.02 | Version 1.0

Medical Technology

> Made in Germany

